جستجو در مقالات منتشر شده


9 نتیجه برای عدم قطعیت

رخساره رستمیان، سید فرهاد موسوی، منوچهر حیدرپور، مجید افیونی، کریم عباسپور،
جلد 12، شماره 46 - ( 10-1387 )
چکیده

فرسایش خاک از جنبه های اقتصادی، اجتماعی و زیست‌محیطی اهمیت دارد که برای کنترل آن نیاز به مدیریت صحیح حوضه آبخیز می‌باشد. در سال های اخیر، استفاده از مدل سازی به‌عنوان راه کار ارزیابی اقدامات کاهش فرسایش مطرح شده است. به هر حال، به‌دلیل محدودیت دسترسی به داده‌های هیدرولوژیک کافی در مناطق کوهستانی، مدل‌سازی حوضه های آبخیز دارای عدم قطعیت هایی می باشد. در مطالعه حاضر، توانایی مدلSWAT2000 در شبیه‌سازی دبی جریان و غلظت رسوب حوضه بهشت‌آباد (از زیرحوضه‌های کارون شمالی) با مساحت 3860 کیلومتر مربع بررسی شد. واسنجی و تحلیل عدم قطعیت مدل با استفاده از برنامه SUFI-2 انجام پذیرفت. شاخص‌های p-factor، d-factor، R2 و ناش- ساتکلیف (NS) به‌منظور ارزیابی توانایی مدل SWAT در شبیه‌سازی رواناب و رسوب به‌کار برده شد. آمار رواناب شش ایستگاه هیدرومتری در سال های 1996-2004 برای واسنجی و اعتبارسنجی این حوضه به‌کار برده شد. نتایج نشان داد که در مرحله واسنجی رواناب ماهانه، ضرایب p-factor، d-factor، R2 و NS در خروجی حوضه به ترتیب 61/0، 48/0، 85/0 و 75/0 و در مرحله اعتبارسنجی 53/0، 38/0، 85/0 و 57/0 به‌دست آمد. این ضرایب در مرحله واسنجی غلظت رسوب روزانه در خروجی حوضه 55/0، 41/0، 55/0 و 52/0 و در مرحله اعتبارسنجی 69/0، 29/0، 60/0 و 27/0 به‌دست آمد. در مجموع، نتایج مطالعه نشان داد که SWAT رواناب را بهتر از رسوب شبیه‌سازی کرد. از دلایل ضعف مدل در شبیه‌سازی رواناب در بعضی از ماه‌های سال می‌توان به شبیه‌سازی ضعیف ذوب برف برای این حوضه کوهستانی، عدم سازگاری فرضیات مدل در انتقال جریان در لایه‌های یخ‌زده و اشباع و تعداد کم داده‌ها اشاره کرد. از علت‌های ضعف مدل در شبیه‌سازی بار رسوب می‌توان به شبیه‌سازی ضعیف جریان، تعداد کم داده‌ها و هم‌چنین عدم پیوستگی اطلاعات رسوب استفاده شده اشاره کرد.
سمیرا اخوان، جهانگیر عابدی کوپایی، سید فرهاد موسوی، کریم عباسپور، مجید افیونی، سید سعید اسلامیان ،
جلد 14، شماره 53 - ( 7-1389 )
چکیده

توزیع زمانی و مکانی آب در حوضه های آبریز، تخمین کمیت و کیفیت آب و عدم قطعیت تخمینهای حاصله از اهمیت خاصی برخوردار به منظور تخمین مؤلفه های منابع آب شامل آب آبی (مجموع رواناب سطحی و تغذیه آب زیرزمینی SWAT است. در مطالعه حاضر، مدل عمیق)، آب سبز (تبخیر و تعرق واقعی) و ذخیره آب سبز (آب خاک) در حوضه آبریز همدان- بهار استفاده شد. همچنین از الگوریتم SWAT برای واسنجی و اعتبارسنجی بر اساس دبی ماهانه رودخانه و تحلیل عدم قطعیت مدل SWAT-CUP در بسته نرم افزاری ،SUFI2 محاسبه میشود. نتایج شبیه سازی دبی رودخانه ها در بیشتر P-factor و R-factor به کار گرفته شد. درجه عدم قطعیت توسط فاکتورهای در مرحله واسنجی R-factor ایستگاهها، به ویژه خروجی حوضه آبریز (ایستگاه کوشک آباد) رضایتبخش بود. نتایج نشان داد که مقادیر بین ٢٠ تا ٦٠ درصد بودند. کم بودن مقادیر فوق به ترتیب بیانگر واسنجی خوب رواناب P-factor ٠ و مقادیر / ٠ تا ٨ / رواناب ماهانه بین ٤ در حوضه و عدم قطعیت زیاد پیشبینیهاست. در بیشتر ایستگاهها، به علت عدم دسترسی به اطلاعات کافی در مورد مقدار آب برداشتی از ٠/ بعد از واسنجی بین ٣ (NS) کم است. ضریب نش- ساتکلیف P-factor رودخانهها، شبیه سازی جریان پایه ضعیف بوده و در نتیجه مقدار ٠ بود که نشان میدهد واسنجی مدل در خروجی حوضه از دقت بسیار خوبی برخوردار است. از این مطالعه، اطلاعات خوبی در مورد / تا ٨ مؤلفه های منابع آب، هم از نظر توزیع مکانی (در مقیاس زیرحوضه) و هم از نظر توزیع زمانی (در مقیاس ماهانه)، به همراه باند تخمین عدم قطعیت ٩٥ درصد، به دست آمد. نتایج تحلیل عدم قطعیت مؤلفه های منابع آب نشان میدهد که میانگین ماهانه عدم قطعیت مربوط به تخمین آب آبی بیشتر از سایر مؤلفه هاست، زیرا این مؤلفه به تعداد پارامترهای بیشتری حساس میباشد
مهدی غلام زاده، سعید مرید، مجید دلاور،
جلد 15، شماره 56 - ( 4-1390 )
چکیده

برای مدیریت خشک‌سالی در مناطق خشک که اتکای بیشتری به سدها و ذخیره‌سازی آب‌های سطحی دارند، استفاده از سیستم‌های هشدار سریع خشک‌سالی(DEWS) راهبردی مفید می‌باشد. در تحقیق حاضر تلاش شده است تا چنین سیستمی طراحی شود که از سه بخش اصلی شامل: 1) پایش خشک‌سالی 2) پیش‌بینی ورودی‌های رودخانه و مصرف آب و 3) محاسبه یک شاخص هشدار برای مدیریت خشک‌سالی تشکیل می‌شود. این سیستم برای سد زاینده رود ارائه شده است. بدین منظور، ابتدا جریان ورودی به سد و مصارف با استفاده از شبکه‌های عصبی مصنوعی در یک دوره 6 ماهه با در نظر گرفتن عدم قطیعت مربوط، در سطوح احتمالاتی مختلف پیش‌بینی گردید. هم‌چنین بر اساس اطلاعات تاریخی ذخیره آب مخزن و روش نگاشت خود سامان یافته (SOFM)، شدت خشک‌سالی در 5 دسته (بدون خشک‌سالی ، خشک‌سالی ضعیف، خشک‌سالی با شدت کم، خشک‌سالی شدید و خشک‌سالی خیلی شدید) تعیین شد. سپس یک شاخص هشدار خشک‌سالی (DAI) با توجه به شرایط جاری مخزن سد، ورودی‌ها و مصرف آتی آب محاسبه گردید. در نهایت بر اساس نتایج حاصل از شاخص محاسبه شده، سطوح مختلف هشدار از وضعیت نرمال تا شرایط کم آبی شدید مشخص شد. نتایج نشان داد که استفاده از سیستم هشدار سریع طراحی شده می‌تواند نقش مؤثری در مدیریت مخزن سد زاینده رود، تعیین سیاست‌های جیره-بندی و هم‌چنین کاهش خسارات خشک‌سالی داشته باشد.
مهین کرمی، مجید افیونی، امیرحسین خوشگفتارمنش، محمدعلی حاج عباسی، حسین خادمی، علی عبدی،
جلد 16، شماره 61 - ( 7-1391 )
چکیده

هدف اصلی در کشاورزی پایدار، افزایش کمی و کیفی تولید محصولات غذایی به شرط عدم افزایش میزان آلودگی در اکوسیستم زراعی از حدود مجاز می‌‌باشد. مقدار ورود و خروج عناصر به زمین‌های کشاورزی یکی از شاخص‌های پایداری به شمار می‌رود. این پژوهش به منظور مدل‌سازی روند انباشت روی در خاک‌های کشاورزی سه استان منطقه خشک و نیمه‌خشک ایران (فارس، اصفهان و قم) به کمک مقایسه توازن جرمی ورودی‌ها و خروجی‌ها و بررسی عدم قطعیت (Uncertainty) آن انجام گرفت. مدل‌سازی روند انباشت روی در خاک‌های زراعی با استفاده از مدل (MFA) Mass Flux Assessment و با روش تصادفی مبتنی بر توازن جرمی و از ترکیب روش لاتین هایپرکیوب و شبیه‌سازی مونت کارلو انجام گرفت. به این منظور از اطلاعات زراعی شامل نوع محصول، سطح زیر کشت، عملکرد، نوع و تعداد دام‌ها، میزان مصرف کودهای شیمیایی، کمپوست و لجن فاضلاب و هم‌چنین اطلاعات مرتبط با غلظت روی در گیاهان و انواع کودها استفاده شد. نتایج بیانگر انباشت مقادیری چشمگیر از روی در زمین‌های کشاورزی شهرستان‌های مورد مطالعه و به‌ویژه نجف‌آباد (g ha-1yr-1 3009) بود. کودهای حیوانی و شیمیایی مهم‌ترین مسیرهای ورود روی به زمین‌های کشاورزی، و کود‌های حیوانی مهم‌ترین مسیر مؤثر بر عدم قطعیت نرخ انباشت روی در این مطالعه شناخته شدند.
مجتبی شفیعی، حسین انصاری، کامران داوری، بیژن قهرمان،
جلد 17، شماره 64 - ( 6-1392 )
چکیده

مطالعه چگونگی کاربرد مدل‌های مفهومی هیدرولوژی در حوضه‌های آبریز امروزه از مهم‌ترین مسائل مورد توجه محققان می‌باشد. این مسأله به‌خصوص در مناطق خشک و نیمه‌خشک از اهمیت بیشتری برخوردار است چون فرآیندهای هیدرولوژی این مناطق پیچیده‌تر و واسنجی نیز مشکل‌تر خواهد بود. در این تحقیق مدل مفهومی و نیمه-توزیعی SWAT در حوضه نیمه‌خشک نیشابور با مساحت 9350 کیلومترمربع برای شبیه-سازی جریان در یک دوره 8 ساله مورد استفاده قرار گرفته است. در فرآیند مدل-سازی، حوضه آبریز نیشابور به 22 زیرحوضه و در نهایت به 146 واحد واکنش هیدرولوژیک (HRUs) تقسیم شد. برای واسنجی و تحلیل عدم قطعیت نیز از روش SUFI2 استفاده شده است. بررسی نتایج نشان داد که واسنجی و اعتبارسنجی مدل نسبتاً ضعیف به‌دست آمده است، که به سبب وجود عدم قطعیت در مدل مفهومی حوضه مانند احداث مخازن تغذیه مصنوعی، وقوع پدیده نشست زمین و شکاف در حوضه می‌باشد. هم‌چنین عامل مؤثر دیگر پیچیدگی سیستم هیدرولوژی در مناطق خشک و نیمه‌خشک است که مربوط به ساده‌سازی‌های این گونه مدل‌ها در شبیه‌سازی و تعامل پیچیده بین رواناب و جریان زیرسطحی در وقایع بارندگی با ارتفاع کم می‌باشد. به‌طور کلی به نظر می‌رسد که نمی‌توان از مدل‌های شبیه‌سازی توزیعی حوضه آبریز در مناطق خشک و نیمه‌خشک که دارای منابع متعدد عدم قطعیت می‌باشند و هم‌چنین عدم ورود آنها به مدل، انتظار زیادی داشت.
راحله ملکیان، جهانگیر عابدی کوپایی، سید سعید اسلامیان،
جلد 18، شماره 68 - ( 6-1393 )
چکیده

در این مطالعه، از الگوریتم SUFI-2 (Sequential Uncertainty Fitting, ver. 2) در ‌بسته نرم‌افزاری LEACHN-CUP در تعیین پارامترهای مدل LEACHN و تحلیل عدم قطعیت آن در دو حالت عدم استفاده از زئولیت کلینوپتیلولایت (کنترل) و کاربرد آن (تیمار Z) استفاده شد. مقادیر P-factor، R-factor (نشان‌دهنده درجه عدم قطعیت) و ضریب نش- ساتکلیف (NS) در شبیه‌سازی میزان زه‌آب خروجی در کنترل به‌ترتیب 71/0، 76/0 و 92/0 به‌دست آمد. نتایج شبیه‌سازی در صورت کاربرد پارامترهای هیدرولیکی به‌دست آمده از کنترل در شبیه‌سازی میزان زه‌آب خروجی در تیمار Z رضایت‌بخش بود (مقادیر P-factor، R-factor و NS به‌ترتیب 82/0، 78/0 و 87/0). مقادیر P-factor، R-factor و NS در پیش‌بینی میزان نیترات خروجی در کنترل به‌ترتیب 87/0، 36/1 و 91/0 به‌دست آمد. در صورت کاربرد پارامترهای مؤثر در چرخه نیتروژن به دست آمده از کنترل در شبیه‌سازی میزان نیترات خروجی در تیمار Z، عدم قطعیت به‌مقدار قابل توجهی افزایش یافت (مقادیر P-factor و R-factor به‌ترتیب 1 و 46/2). در صورت اصلاح پارامترهای کنترل برای تیمار Z، افزایش شدت دنیتریفیکاسیون، افزایش ضریب توزیع -N NO3 و کاهش شدت نیتریفیکاسیون در اثر کاربرد اصلاح‌کننده کلینوپتیلولایت مشاهده شد.
فریبرز یوسفوند، سعید شعبانلو،
جلد 23، شماره 4 - ( 12-1398 )
چکیده

در این مطالعه، سطح آب زیر‌زمینی در منطقه سراب قنبر- واقع در جنوب شهر کرمانشاه، کشور ایران- با استفاده از مدل موجک ماشین آموزش نیرومند خودتطبیقی (WA-SAELM) تخمین زده شد. برای توسعه مدل عددی از روش هوش مصنوعی و جدید ماشین آموزش نیرومند خودتطبیقی و تبدیل موجک استفاده شد. در ابتدا، با استفاده از تابع خود‌همبستگی، خود‌همبستگی نسبی و تأخیرهای مؤثر، هشت مدل مختلف SAELM و WA-SAELM متمایز توسعه داده شدند، سپس مقادیر تراز آب زیرزمینی چاه مشاهداتی نرمال‌سازی شدند. در ادامه، با تجزیه‌و‌تحلیل نتایج مدل‌سازی، بهینه‌ترین خانواده موجک برای مدل‌سازی انتخاب شد. با ارزیابی نتایج مدل‌های SAELM و WA-SAELM مشخص شد که مدل‌های WA-SAELM در مقایسه با مدل‌های SAELM مقادیر تابع هدف را با دقت بیشتری تخمین زدند. سپس مدل برتر بر اساس دقت آن در پیش‌بینی تراز آب زیرزمینی انتخاب شد. به‌عنوان مثال در حالت تست، مقادیر R، MAE و NSC برای مدل برتر بهترتیب برابر 995/0، 988/0 و 990/0 محاسبه شدند. همچنین برای مدل‌های عددی، تحلیل عدم قطعیت انجام و نشان داده شد که مدل برتر مقادیر مشاهداتی را کمتر از مقدار واقعی تخمین زده است.

کورش شیرانی،
جلد 25، شماره 2 - ( 6-1400 )
چکیده

شناسایی مناطق حساس و مستعد فرسایش خندقی با استفاده از مدل‏ های آماری و همچنین استفاده حداکثری از داده‏ ها و اطلاعات موجود با صرف هزینه و زمان کم‏تر و دسترسی ‏به ‏‏دقت بیش‏تر از اهمیت ویژه‏ای برخوردار می‏باشد. هدف این پژوهش تعیین مناطق حساس به فرسایش خندقی و تهیه نقشه حساسیت نسبت به آن با استفاده از ‏داده‏ کاوی‏‏ روش‏ های آماری دو متغیره دمپسترشفر و چندمتغیره خطی و تلفیق آن‏ها به منظور ارتقاء قابلیت‏ ها و مرتفع نمودن معایب آن‏ها در حوزه آبخیز سمیرم در جنوب استان اصفهان می‏باشد. بدین منظور با استفاده از نقشه پراکنش مکانی 156 ‏خندق‏ و14 پارامتر موثر در رخداد ‏خندق، مقادیر شاخص ضریب تحمل (TOL) و فاکتور تورم واریانس (VIF) آزمون هم‏خطی چندگانه (Multicollinearity) عوامل موثر تعیین شدند. مدل‌سازی و اعتبارسنجی به‌ترتیب با استفاده از نسبت 70 و 30 درصد ‏خندق‏ های شناسایی شده انجام شد. نقشه ‏های حساسیت تهیه شده به 5 طبقه حساسیت خیلی کم تا خیلی زیاد تقسیم شدند. شاخص سطح سلول هسته (SCAI) و سطح زیر منحنی ویژگی عملگر گیرنده (AUC-ROC) به ‏ترتیب به‏ منظور تعیین آستانه‏ های طبقات و اعتبارسنجی نقشه‏ های پهنه‏ بندی حساسیت مورد استفاده قرار گرفتند. نتایج روش رگرسیون چند متغیره نشان داد که پارامترهای کاربری اراضی، شیب و فاصله از آبراهه بیش‌ترین تاثیر را در رخداد ‏خندق داشته ‏اند. مدل تلفیقی با AUC-ROC معادل 0/942، نسبت به مدل‏ های نظریه شواهد دمپسترشفر (0/924) و رگرسیون چند متغیره (0/864) از دقت بیش‏تری برخوردار می‏باشد. همچنین مقدار SCAI در مدل ‏تلفیقی‏‏ از رده‌های حساسیت خیلی‌کم به خیلی‌زیاد دارای روند نزولی می‏باشد که بیانگر تفکیک مناسب رده‌بندی حساسیت در این مدل می‏ باشد.

امیر حسین عظیمی، سعید شعبانلو، فریبرز یوسفوند، احمد رجبی، بهروز یعقوبی،
جلد 25، شماره 4 - ( 12-1400 )
چکیده

در این مطالعه، عمق حفره آبشستگی در پائین¬دست سرریزهای سنگی با شکل¬های مختلف J، I، U و W توسط یک روش نوین هوش مصنوعی تحت عنوان ماشین آموزش نیرومند خارج از محدوده (ORELM) شبیه¬سازی شد. داده¬های مشاهداتی به دو دسته آموزش (70 درصد) و تست (30 درصد) تقسیم شدند. سپس تابع فعال¬سازی بهینه برای شبیه¬سازی عمق آبشستگی در پائین¬دست سرریزهای سنگی انتخاب شد. در ادامه، با استفاده از پارامترهای ورودی که شامل نسبت طول سازه به عرض کانال (b/B)، عدد فرود تراکمی (Fd)، نسبت اختلاف عمق جریان بالادست و پائین¬دست سازه به ارتفاع سازه (Δy/hst) و فاکتور شکل سازه (φ)، یازده مدل مختلف ORELM برای تخمین عمق آبشستگی توسعه داده شدند. با انجام یک تحلیل حساسیت، مدل برتر و مؤثرترین پارامترهای ورودی شناسایی شدند. مدل برتر مقادیر آبشستگی¬ها را توسط پارامترهای بدون بعد b/B, Fd, Δy/hst شبیه¬سازی کرد. برای این مدل، مقادیر ضریب همبستگی (R)، شاخص عملکرد  (VAF)و ضریب نش (NSC) برای مدل برتر در شرایط تست به¬ترتیب مساوی با 0/956، 91/378 و 0/908 بدست آمدند. همچنین، پارامترهای بدون بعد b/B, Δy/hst به¬عنوان مؤثرترین پارامترهای ورودی شناسایی شدند. همچنین، نتایج مدل برتر با مدل ماشین آموزش نیرومند نیز مقایسه شدند که مدل ORELM دقت بیشتری داشت. علاوه بر این، تحلیل عدم قطعیت نشان داد که مدل ORELM مقادیر آبشستگی¬ها را بیشتر از واقعیت تخمین زد. در ادامه، برای مدل برتر، یک تحلیل حساسیت مشتق نسبی (PDSA) اجرا گردید.


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به مجله علوم آب و خاک دانشگاه صنعتی اصفهان می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb