جستجو در مقالات منتشر شده


2 نتیجه برای فازی- عصبی

مجتبی شادمانی ، صفر معروفی ،
جلد 15، شماره 55 - ( 1-1390 )
چکیده

در این تحقیق، با استفاده از داده‌های مشاهده شده تشت کلاس A، کاربرد روش‌های رگرسیون غیر خطی، شبکه‌های عصبی مصنوعی، سیستم استنتاج فازی- عصبی و هم‌چنین روش تجربی استیفنز- استوارت، جهت برآورد تبخیر روزانه منطقه کرمان مورد بررسی قرار گرفت. در روش‌های شبکه عصبی مصنوعی، سیستم استنتاج فازی- عصبی و رگرسیون غیر خطی، مقادیر دما، فشار، رطوبت نسبی، تابش خورشیدی و سرعت باد، با پنج ترکیب مختلف به عنوان متغیرهای ورودی و تبخیر از تشت به عنوان متغیر خروجی به کار گرفته شد. به منظور ارزیابی کارایی روش‌های به کار رفته، ضمن مقایسه مقادیر برآورد شده و مشاهده شده، هم‌چنین از شاخص‌های آماری ضریب تعیین (R2)، جذر میانگین مربع خطا (RMSE) و میانگین خطای مطلق (MAE) استفاده گردید. با توجه به داده‌های مورد استفاده مقادیر میانگین ماهانه و سالانه تبخیر منطقه به ترتیب 272 و 3263 میلی‌متر است. نتایج این تحقیق نشان داد که روش فازی- عصبی نسبت به بقیه روش‌ها، از دقت بیشتری برای برآورد تبخیر از تشت برخودار است. در این مدل، که در آن از تمام متغیرهای ورودی استفاده شده، مقادیر R2، RMSE و MAE در مرحله آزمون به ترتیب 85/0، 61/1 (میلی‌متر در روز) و 24/1 (میلی‌متر در روز) است. تحلیل حساسیت متغیرهای ورودی روش فازی- عصبی نشان داد که مقادیر دما و سرعت باد (به عنوان متغیرهای ورودی) به ترتیب بیشترین تأثیر را بر تبخیر دارا هستند. هم‌چنین با توجه به دقت کم مدل استیفنز- استوارت، سعی شد که مقادیر ضرایب تجربی آن با استفاده از داده‌های تابش و دما اصلاح گردد، که نتایج مطلوبی به دست نیامد.
مریم صادقیان، حجت کرمی، سیدفرهاد موسوی،
جلد 21، شماره 4 - ( 11-1396 )
چکیده

امروزه، شناخت بیشتر خشکسالی و ایجاد سیستم‌های پایش آن، بخصوص در دوره‌های کوتاه مدت، و افزودن قابلیت پیش‌بینی به این سیستم‌ها، می‌تواند منجر به ارائه راهکارهای مناسبتری در بخش‌های مدیریت تخصیص منابع آب گردد. در این پژوهش، با استفاده از روش‌های پیش‌بینی سری‌های زمانی، سیستم‌های استنتاج فازی- عصبی تطبیقی و شبکه‌های عصبی مصنوعی سعی شده مدل‌های مناسب جهت پیش‌بینی خشکسالی شهرستان سمنان ارائه گردد. در این مدل‌سازی‌ها از داده‌های میانگین ماهانه پارامترهای هواشناسی مانند بارندگی، دما، حداکثر دما، حداقل دما، رطوبت نسبی، حداکثر رطوبت نسبی، حداقل رطوبت نسبی و شاخص خشکسالی SPI طی دوره آماری 1966 تا 2013 استفاده شده است. نتایج نشان داد که از بین انبوه مدل‌های ساخته شده، مدل ANFIS با ورودی‌های میانگین بارش، میانگین حداکثر دما، SPI و داده‌های یک ماه قبل آنها، با 10 قانون و تابع عضویت گوسی، با مقادیر RMSE برابر 777/0، MAE برابر 593/0 و ضریب همبستگی 4/0 در مرحله آموزش و RMSE برابر 837/0، MAE برابر 644/0 و ضریب همبستگی 362/0 در مرحله آزمون، به‌عنوان مدل برتر انتخاب شد. سپس، پارامترهای ورودی این مدل با استفاده از مدل ARIMA برای 12 ماه آینده پیش‌بینی گردید و به‌عنوان ورودی به مدل مذکور معرفی شدند و SPI برای 12 ماه آینده پیش‌بینی شد. روش‌های شبکه عصبی مصنوعی و سری زمانی با اختلاف کم در مقادیر خطا، در رتبه‌های بعد قرار گرفتند. پارامترهای ورودی SPI و دما عملکرد مناسبتر و پارامتر بارش عملکرد ضعیف‌تری را داشتند.


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به مجله علوم آب و خاک دانشگاه صنعتی اصفهان می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb