روح اله رضایی ارشد، غلامعباس صیاد، مسعود مظلوم، مهدی شرفا، علیرضا جعفرنژادی،
جلد 16، شماره 60 - ( 4-1391 )
چکیده
اندازهگیری مستقیم ویژگیهای هیدرولیکی خاک وقتگیر و پرهزینه بوده و تا حدی به علت غیرهمگن بودن خاک و خطاهای آزمایشگاهی غیرقابل اعتماد است. در عوض ویژگیهای هیدرولیکی خاک میتواند از جایگزینی دادههای زودیافتی مانند بافت خاک و چگالی ظاهری با استفاده از توابع انتقالی به دست آید. شبکههای عصبی و رگرسیون آماری از جمله روشهایی هستند که برای تخمین توابع انتقالی خاک (PTFs) استفاده میشوند. در این پژوهش از شبکه عصبی نوع پرسپترون چندلایه (MLP) و مدل-های رگرسیونی حذف تدریجی متغیرها و گام به گام ورود متغیرها برای بسط این توابع برای تخمین هدایت هیدرولیکی اشباع خاک با استفاده از چگالی ظاهری، تخلخل کل و درصد توزیع اندازه ذرات خاک استفاده شد. دادهها از 125پروفیل خاک مربوط به مطالعات خاکشناسی و اصلاح اراضی موجود در سازمان آب و برق خوزستان تهیه شد. نتایج نشان داد که شبکه MLP با الگوریتم آموزشی بیزین با ضریب تعیین (65/0=2R) و خطای ( 04/0RMSE=) نسبت به مدلهای رگرسیونی کارایی بهتری در تخمین هدایت هیدرولیکی اشباع خاک داشت.