فرشته ظریف، علی عصاره، مهدی اسدی لور، حسین فتحیان، داود خدادادی دهکردی،
جلد 26، شماره 2 - ( 6-1401 )
پیشبینی دقیق و قابل اعتماد از سطح آب زیرزمینی در یک منطقه برای استفاده پایدار و مدیریت منابع آب بسیار مهم است. این پژوهش با هدف ارزیابی شبکههای عصبی مصنوعی (ANNs)؛ پیشرونده عمومی (GFF) و تابع پایه شعاعی (RBF) در پیشبینی ماهانه تراز سطح آب زیرزمینی در دشت دزفول- اندیمشک در جنوب غربی ایران انجام شد. برای تعیین متغیرهای مؤثر ورودی در ANNs از الگوریتم اطلاعات متقابل جزئی (PMI) استفاده شد. نتایج بهکارگیری الگوریتم PMI نشان میدهد که متغیرهای ورودی مؤثر بر پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای تحت تأثیر برداشت و تغذیه آب، فقط شامل تراز سطح آب در ماه فعلی است. همچنین متغیرهای ورودی مؤثر بر پیشبینی تراز سطح آب برای پیزومترهای تحت تأثیر فقط برداشت آب، به ترتیب شامل تراز سطح آب در ماه فعلی، تراز سطح آب در یک ماه قبل، تراز سطح آب در دو ماه قبل، مختصات عرضی پیزومتر به UTM، تراز سطح آب در سه ماه قبل، تراز سطح آب در چهار ماه قبل، تراز سطح آب در پنج ماه قبل و مختصات طولی پیزومتر به UTM است. علاوه بر این متغیرهای ورودی مؤثر بر پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای نه تحت تأثیر برداشت و نه تغذیه آب، به ترتیب شامل تراز سطح آب در ماه فعلی، تراز سطح آب در یک ماه قبل، تراز سطح آب در دو ماه قبل، تراز سطح آب در سه ماه قبل، تراز سطح آب در چهار ماه قبل، تراز سطح آب در پنج ماه قبل، تراز سطح آب در شش ماه قبل، مختصات عرضی پیزومتر به UTM و مختصات طولی پیزومتر به UTM است. نتایج نشان میدهد که شبکه GFF از دقت بیشتری نسبت به شبکه RBF، در پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای شامل برداشت و تغذیه آب و پیزومترهای شامل فقط برداشت آب برخوردار است. علاوه بر این شبکه RBF دقت بیشتری در پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای شامل نه برداشت و نه تغذیه آب نسبت به شبکه GFF برخوردار است.