ارزیابی خواص مکانیکی منطقه جوش آلیاژ آلومینیوم 6061 نانوساختار حین فرآیند جوشکاری مقاومتی نقطهای وحید ظهوری شعار ، فتح اله کریم زاده ، عبدالمجید اسلامی دانشكده مهندسي مواد دانشگاه صنعتى اصفهان، اصفهان (دريافت مقاله: 1395/03/12؛ دريافت نسخهٔ نهايي: 1396/01/17 ### چکیده در این پژوهش ابتدا آلومینیوم نانوساختار به روش نورد تبریدی تولید و سپس به روش جوشکاری مقاومتی نقطهای جوشکاری شد. بـرای ایـن منظور پس از انجام عملیات آنیل محلولی، نمونه ها تا کاهش ضخامت 90 درصد تحت فرآیند نورد تبریدی قرار گرفتند. سپس به منظ ور حصـول همزمان استحکام و انعطافپذیری ورق های تولیدشده تحت عملیات پیرسازی (30 ساعت در 130 درجه سانتیگراد) قرار گرفتند. استحکام کششی آلومینیوم نانوساختار 370 مگاپاسکال، ریزسختی آن 135 و یکرز و انعطافپذیری آن 11% به دست آمد. سپس نمونه های نـورد تبریـدی شـده، بـا پارامترهای مختلف شامل شدت جریان 50 الی 100 کیلو آمپر، نیروی الکترود 2/8 کیلو نیوتن، و مدت زمان جوشکاری 0/1 ثانیـه تحـت فرآینـد جوشکاری مقاومتی نقطهای قرار گرفتند. بیشینه نیروی شکست در آزمون کشش برش برای نمونه نانوساختار در مقایسه با نمونههای آلیاژ آلومینیوم 5-601 استحکام جوش بالاتری دارند. كلمات كليدى: آليار آلومينيوم 6061، نانوساختار، نورد تبريدى، جوشكارى مقاومتى نقطهاى ## Evaluation of mechanical properties of nanostructured Al 6061 alloy weldment during resistance spot welding process ### V. Zohoori-Shoar ,F. Karimzadeh, A. Eslami Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran. (Received 1 June 2016; Accepted 6 April 2017) ^{*} نو يسنده مسئول، يست الكترونيكي: v.zohoori52@gmail.com وحید ظهوری و همکاران، نشریه علوم و فناوری جوشکاری ایران، سال سوم، شماره1، بهار و تابستان 1396، صفحه53-42 #### **Abstract** In this study, The Al 6061 alloy sheets were produced by Cryorolling process and then were welded by resistance spot welding method. In this regard, the solution treated Al 6061 alloy cryorolled subsequently up to 90% reduction in thickness to produce nanostructure alloy. The cryorolled sheets were then subjected to aging treatment (130°C-30h) in order to obtain simultaneous strength and ductility. Tensile strength of 370 MPa, hardness of 135 HV, and ductility of 11 % was obtained for the nanostructured Aluminum sheets. The Cryorolled samples were then resistance spot welded with different welding parameters, including welding current 50 to 100 kA, electrode force of 2.8 kN, and welding time of 0.1 s. The most tensile shear peak load of weld spot of nanostructured samples was 5580 N. The results for different welded samples showed that the nanostructured ones, have higher weld strength when compared with 6061-T6 Aluminum alloy samples with common grain size. **Keywords**: Al 6061 alloy, nanostructured, Cryorolling, Resistance spot welding.