Search published articles


Showing 3 results for Ghandi

A. Ghandi, M. Shamanian, M. R. Salmani3,
Volume 6, Issue 1 (Journal OF Welding Science and Technology 2020)
Abstract

The structural and hardness developed in advanced high-strength steel DP590 have been investigated with the help of optical microscopy and scanning electron microscopy on resistance spot welded specimens. The hardness diagram of the weld sections was prepared by microhardness test and the temperature peak and heat distribution were simulated by menas of the Abaqus software. The results show that according to the temperature generated in each region of the weld nugget, the HAZ and base metals have different microstructures, and these difference affects the hardness of the regions. The presence of tempered martensite islands with a fraction of 44% in ferrite matrix in base metal, mainly martensitic structure in the nugget, and martensitic structure along with scattered areas of ferrite in the HAZ was observed. The results of the microhardness tests showed difference in hardness values of the regions, and also it was observed that the hardness values increased in the HAZ and weld zone. The hardness values measured in the nugget, base metal, and HAZ were around 400, 200, and 450 HV which were in accordance with the observed structures
Mojtaba Vakili-Azghandi, Ali Shirazi,
Volume 7, Issue 1 (Journal OF Welding Science and Technology 2021)
Abstract

The results showed that the microhardness and tensile strength of the heat-affected zone as the weakest welding zone in some samples reduced up to 30% compared to the base metal. On the other hand, a decrease in rotational speed, an increase in tool movement speed, and the number of welding passes cause grain refinement and improve mechanical properties. However, the effect of decreasing the rotation speed and increasing the tool movement speed were shown to be more favorable due to less heat production. Accordingly, the hardness in the welded zone with a rotational speed of 600 rpm and a movement of 80 mm/min increased from 90 to 125 HV  compared to the base metal, and the hardness reduction in the zones around the welded zone was only 5 Vickers. It was also found that reducing the grain size of the stir zone, while improving the mechanical properties leads to increasing the density of the surface pasive layer, preventing the attack of aggressive chlorine ions and thus reducing the corrosion intensity by 50 times in saline seawater.

S. Azghandirad, M. Movahedi, A. Kokabi, M. Tamizi,
Volume 8, Issue 1 (Journal OF Welding Science and Technology 2022)
Abstract

Development of electronic industries, compression of electronic equipment, and removing lead from electronic circuits for environmental issues, resulted in a significant challenge in design and development of tin-based lead-free solders with physical and mechanical properties similar to old tin-lead alloys. In this regard, the set of Sn-Ag-Cu alloys with eutectic and near eutectic compositions have been proposed to replace Sn-Pb solders. As a lead-free solder alloy, low melting point, high reliability, and compatibility with various fluxes are among the properties of this category of alloys. In order to improve the properties of the joint, these solders are sometimes reinforced with different nanoparticles. In this study, Sn0.3Ag0.7Cu compound reinforced with graphene nanosheets with different weight percentages (0, 0.05, 0.1, and 0.2) was studied. Microstructure of the alloys was investigated by scanning electron microscopy(SEM) and optical microscopy. Melting temperature, wetting behavior and electrical resistivity of the solders were evaluated. According to the results, by adding graphene nanosheets, the wetting angle of the solder first decreased and then increased. This parameter showed the optimal amount for sample containing %0.1 graphene nanosheets with a %10 reduction. The melting point and electrical resistance of the solder alloy did not change significantly with compositing. With the addition of graphene nanosheets, the thickness of the intermetallic compounds Cu6Sn5 present at the interface between copper and solder was reduced up to %30.
 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb