Search published articles


Showing 3 results for Milani

J. M. Milani, T. Saeid,
Volume 5, Issue 1 ((Journal OF Welding Science and Technology 2019)
Abstract

In the present study, effect of inclusions characteristics changing on the formation of acicular ferrite in submerged arc welding of API5l-X65 low alloy steel was investigated. Three different welding fluxes with different chemical composition and basicity index of 0.72, 0.82 and 0.99, and two different welding heat inputs of 1.6 kJ / mm and 2.4 kJ / mm were used to create inclusions with different characteristics such as chemical composition and size. The results indicate that inclusions acting as acicular ferrite nucleation sites and improvement of the microstructure and resulted mechanical properties, can be observed in welding conditions in which the welding flux with lowest basicity index and higher welding heat input. Under these conditions, the percentage of inclusions with a high titanium oxide value and size range of 0.5 to 1.5 micrometers is increased, which increases the amount of acicular ferrite in the microstructure. However, in other welding conditions, formation of grain boundary ferrite reduces amount of acicular ferrite and weakens mechanical properties of weld metal compared to the base metal.
Ramin Delir Nazarlou, Dr Faraz Omidbakhsh, Dr Javad Mollaei Milani,
Volume 6, Issue 1 (Journal OF Welding Science and Technology 2020)
Abstract

Friction stir welding (FSW) is an economic and high quality technique at aluminum welding and joining methods. The most important factor in the soundness of this type of welding, is the mechanism of material transfer in each tool rotation. The materials transfer during the welding process involves horizontal and vertical movement that caused by extrusion process and forging force (the tilt angle due to forging force and on the other hand, shape of pin due to the extrusion process). One of the most important parameters in FSW process is the effect of rotational speed in the welded zone. In this study, the effect of rotational speed at constant welding speed, in the butt joint of pure commercial aluminum, was investigated. The results of the study showed that, increasing the rotational speed due to increases the amount of material transfer in the weld zone. The welded zone was investigated by appearance weld zone experiments and using radiography tests. Also weld zone was investigated in macro and microstructure by using cross section. Then the micro hardness testing has been used by cross section at welded zone. In order to investigate the mechanism of materials transfer during the process, the electrical resistivity test has been used to analyses the amount of materials transfer in the weld zone. Results shows that, increasing rotational speed due to increasing the amount of materials transfer in the weld zone and decreasing the amount of defects in the weld zone.
 
S. A. A. Hashemi Milani, R. Tavangar, M. Azadbeh, Kahinpoor, H. Sadeghi-Nasab,
Volume 6, Issue 1 (Journal OF Welding Science and Technology 2020)
Abstract

During the brazing of aluminum-based heat exchangers, the flux dry-off temperature plays a crucial role to get sound joints with maximum strength. In the present study, the NOCOLOK® flux consists of two phases of K2AlF5.H2O and KAlF4 with a melting point around 580 °C was used for brazing AA3003 as base metal with a clad-coating of AA4343 as filler metal. The slurry was applied on the joints and they dried at 220, 300 and 380 °C in air. The tensile shear test revealed that when the slurry dried at 300 °C, the joint withstand maximum shear stress of 44 MPa without defective features. At 220 °C and 380 °C, joint shear stresses were 34 MPa, 30 MPa respectively. However, drying at 380 °C under protective nitrogen gas enhanced the shear strength of up to 39 MPa. Having applied a change in current dryer temperature in the factory from 360 °C to 300 °C reduced the percentage of heat exchangers leakage from 3.2% to 0.6%, approximately, on a weekly basis.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb