Search published articles


Showing 2 results for Nasresfahani

Hossein Tahmasebi Manesh, Alireza Nasresfahani, Alireza Nasresfahani,
Volume 7, Issue 1 (Journal OF Welding Science and Technology 2021)
Abstract

One of the applications of P460NH micro-alloy steel is its use in pressure vessel tanks. Electrode E8018-G can be used for welding  this steel. In this study, to obtain the optimal welding parameters, the arc process based on ASME IX standard was used. Then, by sampling from the weld section, Vickers hardness test was performed and hardness profiles were drawn in different areas. Then the microstructure of each area was examined and compared with the hardness test results. The corrosion behavior of the heat affected zone, weld zone and base metal was investigated separately using the TOEFL polarization test in a 3.5% solution of NaCl. The results showed that the weld zone had the highest percentage of perlite (62%) and the base metal had the highest percentage of ferrite (‌73%). Also, the heat affected zone has the highest hardness number (298) and the base metal has the lowest value (210) in the Vickers scale. Evaluation of corrosion behavior of different areas also showed that the heat affected zone has the highest corrosion potential (-.651v) and the lowest corrosion current density (1.75×10-5 A/cm2). This is while the base metal has the lowest corrosion potential (-.691v) and the highest corrosion current density (1.2×10-6 A/cm2) compared to the weld metal and the heat affected zone.

M.h. Zakeri, A.r. Nasresfahani, S.m. Barekat,
Volume 7, Issue 2 (Journal OF Welding Science and Technology 2022)
Abstract

In this research, the microstructure of Inconel 625 cladded layer on ASTM A575 steel has been investigated. By examining different parameters, the optimal single-pass sample with the least amount of dilution, porosity and fusion and suitable wetting angle was determined. Then cladding process with the optimal parameter was performed. The microstructure of the cladding layer was evaluated from the base metal to the top. Due to different cooling rates, dendritic morphologies were observed at different distances. Also, the cladding layer was free of any cavities, porosity and cracks and its thickness was 0.9 mm (900 micrometers). The results of (XRD) and (EDS) analyzes indicate thatthe γphase is formed and there is a relatively uniform distribution of elements in the cladding layer. These results also indicate that no change in the chemical composition of the substrate surface was achieved near the interface.The hardness test results also show that the hardness starts from 450 VHN at the top surface and reaches to 135 VHN in the base metal with a gentle slope. This slope of hardness can be attributed to the cooling or heating rates of the substrate.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb