Showing 6 results for Taheri
B. Sadeghian, M. Atapour, A. Taherizadeh ,
Volume 1, Issue 1 (Journal OF Welding Science and Technology of Iran 2016)
Abstract
Today, steel to aluminum joints are used to facilitate transportation and fuel consumption. These joints are applied from nuclear, aerospace and naval to automobile and kitchen industries. According to previous studies fusion welding processes are not suitable methods for these joints, solid-state welding, especially friction stir welding, is a proper way to use for these joints. However, using this method for these two metals needs adequate prediction of temperature distribution and material flow to obtain enhanced joints. In this study, a finite element method is used to predict the temperature distribution. In addition, a computational fluid dynamics solution is coupled with the thermal solution. Therefore, the flow rate, strain rate and dynamic viscosity is obtained. Also, the joint morphology is predicted using the Level Set method. It is shown the material flow depends on flow rate, strain rate and dynamic viscosity and is intensively function of rotational speed. Additionally, offset to the aluminum side improves the morphology of the stir zone.
B. Sadeghian, A. Taherizadeh, M. Atapour, T Salehi, M Nosouhian,
Volume 3, Issue 1 (Journal OF Welding Science and Technology of Iran 2017)
Abstract
Aluminum to stainless steel joints are broadly used in industries in order to reduce fuel consumption. While fusion welding is not a suitable method to join these metals. solid state welding, like friction welding (FW), is an effective way to this process. However, risk of intermetallic compounds (IMCs) formation is probable in these welds. In previews investigations formation of FeAl3, Fe2Al5 and Fe4Al13 is reported. In this study, effect of different parameters on generated heat and temperature distribution that lead to formation of these compounds in a FW of aluminum alloy to stainless steel is investigated using Finite Element Method (FEM). Additionally, a mathematical modeling of the parameters is performed using Artificial Neural Network (ANN) and the optimum level of the parameters has been found.
Mr. N. Taheri Moghaddam, Dr. A. Rabiezadeh, Dr. A. Khosravifard, Dr. L. Ghalandari,
Volume 7, Issue 2 (Journal OF Welding Science and Technology 2022)
Abstract
Conventional fusion welding of aluminum alloys results in coarse-grained structure, inevitable defects, and significant softening in the welding region. Friction stir welding with bobbin tool is a technique of friction stir welding method that has a great potential for developing applications of friction stir welding method in marine, aerospace, and automotive industries due to having an extra shoulder. Sheets of 5083 aluminum alloy with a thickness of 3 mm were welded using the bobbin tool friction stir welding method to assess the feasibility of similar joining. The effect of different process variables such as shoulder pinching gap, transverse speed and tool rotation speed was investigated. The results showed that a sound joint is achieved at a transverse speed of 13 mm / min and a tool rotation speed of 1350 rpm. The results of tensile test showed that the obtained joint efficiency is 94.5%, which is higher than the joint efficiency of fusion methods and comparable to the joint efficiency of conventional friction stir welding. Microscopic evaluation of the fracture surface of welded specimens showed that for similar joints, the dominant fracture mechanism is ductile fracture.
N. Taheri Moghaddam, A. Rabiezadeh, A. Khosravifad, L. Ghalandari,
Volume 8, Issue 2 (Journal OF Welding Science and Technology 2023)
Abstract
Despite the increased use of aluminium alloys in several industries, their common concern is the difficulty of joining dissimilar alloys using welding techniques. Based on this, the primary purpose of this research is to assess the mechanical characteristics of dissimilar joining of heat-treatable 6061 and non-heat-treatable 5083 aluminium alloys by gas tungsten arc welding and to discover the link between microstructure and mechanical properties. Similar welds were also implemented and evaluated in order to more properly analyze and compare the outcomes. The quality of the weld generated after establishing the health of the joint using non-destructive testing was evaluated by destructive bending, tensile, metallographic, and hardness tests to check the mechanical and microstructural qualities. The intended dissimilar weld was produced under the parameters of pulse current 120-80 amps, voltage 20 volts, welding speed 15 cm/min, and filler 5356. It should be highlighted that the dissimilar weld had the maximum joint efficiency, and with perfect control of welding settings and the absence of flaws, only 36% loss of strength was recorded when compared to the base metal. Metallographic images revealed that the formation of hot cracks in the dendritic structure of the weld metal is the major cause of strength loss for 5083 similar weld and the production of numerous porosities in the weld metal for 6061 similar welds.
A. R. Nazari , A. Taherizadeh, M. Atapour,
Volume 10, Issue 1 (Journal OF Welding Science and Technology 2024)
Abstract
In this study, the microstructure and mechanical properties of dissimilar resistance spot welding of AISI 430 steel and S500 MC steel were investigated. To carry out this research, Taguchi's L9 array was used to determine the number of samples and determine the range of variables of each sample, and after welding the samples and performing the shear tensile test, the sample with the highest tensile shear strength (13740 N) and the highest amount of fracture energy (102160 Joules), was considered as the best example; Also, the variables of this sample, i.e., welding current of 12 kW, welding time of 12 cycles, and electrode force of 3 kN, had the highest signal-to-noise values, and these values were chosen among the best range of variables among the proposed variables. Then, a microhardness test was performed on the welded sample with the above variables, and microstructural studies were performed by optical microscope and scanning electron microscope. The hardness of the weld zone was observed to be about 400 Vickers, and the microstructure of the weld metal consisted of ferrite, martensite, and Widmannstatten ferrite.
M. Taheri, Gh. Azimiroeen, M. Shamanian, A. Bahrami,
Volume 10, Issue 1 (Journal OF Welding Science and Technology 2024)
Abstract
The dissimilar joint of alumina to copper with active filler metals Ag-Cu-Ti-Sn and Ag-Cu-Ti-Sn-%3.5Zr were done using the induction brazing process at temperatures of 840 and 860 ℃ for 15 minutes. The microstructures of joints were evaluated using optical microscope (OM) and scanning electron microscope (SEM). Vickers hardness test and shear tensile strength test were used to evaluate the mechanical properties. The results of the microstructural studies showed that the Al2O3/Cu joints using Ag-Cu-Ti-Sn and Ag-Cu-Ti-Sn-%3.5Zr fillers contain a reaction layer at the interface between alumina and the filler metal. At the area of the reaction layer with Ag-Cu-Ti-Sn filler metal, two TiO and Cu3Ti3O phases were observed, and also at the reaction layer with Ag-Cu-Ti-Sn-%3.5Zr filler metal, two TiO and ZrO2 phases were observed. The results of the shear strength test showed that due to the greater thickness of the filler metal and the lower thickness of the reaction layer, the joint with the filler metal Ag-Cu-Ti-Sn-%3.5Zr (14 MPa) has a higher shear strength as compared with the joint with filler metal Ag-Cu-Ti- Sn (9 MPa).