Search published articles


Showing 160 results for Type of Study: Research

M. Vatandoost, E. Mohammadi Zahrani, B. Beidokhti, A. Davoodi,
Volume 8, Issue 1 (8-2022)
Abstract

The welding joints were investigated due to the significance of similar welding of Corten A weathering steel and its dissimilar welding with St12 plain carbon steel in industrial applications. The gas metal arc welding (GMAW) technique with carbon dioxide shielding gas was utilized in the present work. The welding process comprised current and voltage control, welding wire injection rate, shielding gas rate, welding speed, connection configuration, and microstructure evolution. Mechanical properties and microstructure evolution in similar and dissimilar joints and weld defects were evaluated by tensile, bending, hardness, metallographic, and radiographic tests. The weld microstructure in similar and dissimilar joints included grain boundary ferrite, acicular ferrite, and WidmanStatten ferrite. The tensile strengths of the similar and dissimilar joints were respectively 497 and 303 MPa. The weld zone hardness was 210 and 180 Vickers for similar and dissimilar joints, respectively. In conclusion, similar welding outperformed dissimilar welding considering weld joint defects, mechanical properties, and microstructure.
 

M. Foumani, H. Naffakh-Moosavy, A. Rasouli, H. Aliyari,
Volume 8, Issue 1 (8-2022)
Abstract

Surface roughness in the welding processes is one of the important parameters in the laser welded metal connections which affects laser beam absorption directly. When the laser beam is irradiated to the surface of the base metal, the surface roughness plays an important role in the amount of beam absorption and the amount of melting achieved and directly affects the penetration depth. The main purpose of this study is to investigate the effect of roughness mentioned above in the equal parameter for this widely used aluminum alloy. Microstructural Surveys were performed on three different roughness levels of the sample and the results obtained from the analysis of samples by optical microscope (OM), atomic force microscope (AFM) and Scanning electron microscopy (SEM) analysis showed that, increasing the surface roughness up to Ra = 0.16 micrometer, caused the greater degree of beam engagement by the surface grooves, hence more concentration of the beam photons and more melting obtained, so the depth of penetration increases by consuming a lower amount of energy.
 

H. Gorji, Dr. S. M. Barakat, S. R. Shoja Razavi, S. S. Babaie Sangetabi, M. Erfanmanesh,
Volume 8, Issue 1 (8-2022)
Abstract

The aim of the present study is to investigate the mechanical and microstructural properties of 1.7225 steel in laser welding process using Nd:YAG pulsed laser device and then to determine the optimal focal length relative to the part in the welding area. After welding, microstructural characterization, microhardness and tensile tests were performed. Evaluations showed that the optimal focal length for welding of steel sheet 1.7225 with a thickness of 1 mm, it was about 9 mm and the focus was 1 mm below the surface of the part. Due to the high thermal concentration and cooling rate in laser welding, a completely martensitic microstructure has been observed in the molten and heat-affected regions of all specimens. In this alloy, the hardness of the base metal is 310±10 HV. After welding, the hardness of the sample with the optimal focal length   has reached 625±10 HV in the heat affected zone and 730±10 HV in the melting zone. Also, the results of tensile test showed that the tensile properties of the sample with the optimal focal length were almost similar to the base steel and fracture was observed in the base steel region.
 

I. Saydi, R. Dehmolaei, Kh. Ranjbar,
Volume 8, Issue 1 (8-2022)
Abstract

In this research, the diffusion bonding of the stabilized zirconia ceramic and Nimonic 105 superalloy using Ti/Nb/Ni multi-interlayer was carried out. Joint was performed using the plasma spark technique in a vacuum atmosphere and at different temperatures and times. The microstructure of the different joint zones was studied using optical and FESEM microscopes equipped with an EDS analyzer. The results showed that the critical region is Ti/3YSZ interface and in all conditions diffusion bonding in Ti/Nb, Nb/Ni, and Ni/NI 105 interfaces were done. Microstructural observations showed that in the Ti/3YSZ interface at all temperature and time conditions, the connection of two separate regions including Ti3O and (Zr, Ti)2O was formed due to the difference in the diffusion depth of Ti, Zr, and O elements and with increasing temperature and time, the thickness of these regions increased. Microstructural studies showed that the bond at 900  and 30 minutes did not have any cracks and discontinuities and due to the better diffusion of atoms, a suitable reaction layer was formed. Microhardness observations and EDS analyses confirmed that the Ti3O reaction layer is the weakest zine.

H. Tirband, D. Akbari, M. Sadeh,
Volume 8, Issue 1 (8-2022)
Abstract

Todays, application of composite materials has been increased in various industries due to their special strength properties and also other unique features. One of the important things during making of such materials, is their connection to each other. In this article, the Joining of heat-hardened parts with surface preparation with the help of laser, simple and rough, has been investigated. The main goal is to investigate the better surface adhesion mechanisms of the connection compared to the simple surface, as well as to create practical approaches to increase the adhesion strength of the thermosetting parts. The composites were made of heat-hardened epoxy resin (which hardens after 12 hours at room temperature) and two-dimensional woven glass fibers and were connected by glue after volume heating at a temperature of 180-200 degree Celsius. In this research, the overlapping surface of the part was engraved by laser in circular patterns. The raw parts were prepared by manual polishing and mechanical abrasion. The results show that by examining the effect of surface roughness and composite thickness, the highest value of shear strength is related to the surface roughness compared to other preparation methods. Surface preparation increases the amount of adhesive penetration in the parts and expands the tensile strength. The thickness also has a conditional effect on the strength of the connection.
 

S. Golestanehzadeh, Dr. S.h. Mousavi Anijdan, Dr. H.r. Najafi Dezdeh Monfared,
Volume 8, Issue 1 (8-2022)
Abstract

In this investigation the effect of oxides powders of SiO2, MoO3 and CuO on the depth of penetration, microstructure and hardness profile of GTAWeld precipitation hardening martensitic 17-4PH was assessed. Samples were taken from 17-4PH steel sheet with the dimensions of 150*50 mm and with the thickness of 5 mm, and were welded by oxide powder of SiO2, MoO3 and CuO. Results showed that using oxide powder increased the penetration depth of the welded joints by about 150 percent compared to the normal condition. Also, it was shown that although using SiO2 powder increased the penetration depth to about 7.49 mm, it provides inferior weld bead appearance. The use of MoO3 and CuO powder increased the penetration depth of the weld to about 5.3 mm. Although inclusions were found throughout the side of the weld bead when MoO3 powder was employed for welding. The microstructure of the weld in different samples did not vary and included dendritic structure with delta ferrite located between the dendrites. The hardness profile of the welded joints showed the closeness of the hardness of the welded joints using different oxide powder with the base metal.
 

M. J. Bagban, M. Mosallaee Pour, H. Hajisafari, A. Babnejad, A. Saboori,
Volume 8, Issue 1 (8-2022)
Abstract

In the present study, the microstructure and mechanical properties of the dissimilar joint of Inconel 625 (IN-625) superalloy to austenitic stainless steel AISI316L (SS-316L) via AWS-BNi3 interface layer and transient liquid phase (TLP) bonding process were evaluated and necessary conditions for creating an efficient joint were determined. TLP bonding was performed in temperature and time range of 1050-1150ºC and 5-20min, respectively, under the protection of argon shielding gas with a purity of 99.9995%. Microstructural (OM and SEM) and phase (XRD) studies revealed that bonding at 1150 ° C for 20 min results in completion of isothermal solidification and develops a uniform gamma (γ) phase at the bonding zone. Cooling the samples before completion of isothermal solidification results in the formation of chromium and molybdenum-rich eutectic compounds at the bonding centerline. The continuous morphology of the eutectic compounds caused a sharp drop in the shear strength of the specimens (~50% reduction of shear strength). The inter-diffusion of alloying elements between the bonding area and the surrounding base metal results in the formation of chromium carbide in the IN-625 and chromium- boron compounds in the SS-316L, which increased the microhardness of these areas compared to the base metals and the bonding zone.
 

S. Varmaziar, M. Atapour, Y. Hedberg,
Volume 8, Issue 1 (8-2022)
Abstract

The influence of filler metals on the microstructure and corrosion behavior of AISI 316L welds was investigated. Gas Tungsten Arc welding (GTAW) process was applied to join the AISI 316L plates using ER 316L and ER 312 filler metals. The obtained microstructures were characterized by optical metallography and scanning electron microscope (SEM). Corrosion assessments were conducted in 3.5% NaCl using a three electrode cell.  Open circuit potential and potentiodynamic polarization examinations were conducted on the welds and base metal. Microstructural evaluations indicated that a combination of austenite and ferrite phases was formed in the welds fabricated by both filler metals. Based on the micro hardness tests, the weld fabricated by ER 312 filler exhibited superior harness compared to the ER 316L weld. Corrosion evaluations also show that the weld metal obtained from two filler metals has a lower corrosion rate due to the higher amount of chromium and higher ferrite compared to the base metal. Also, the lower corrosion current of ER 312 weld metal compared to ER 316L weld metal is for this reason. In contrast to the base metal compared to the two welding metals, the result of the two filler metals has shown better pitting corrosion results according to the electrochemical tests and also the examination of the surfaces using an optical microscope after these tests, that these results are due to The presence of two phases of austenite and ferrite in the vicinity of each other in weld metals and the intensification of galvanic corrosion is due to the discharge of the austenite phase from chromium and molybdenum.
 

M. M. Taghvaei, M. Shamanian, Behzad Niroumand, H. Mostaan,
Volume 8, Issue 2 (1-2023)
Abstract

Joining of Hastelloy C276 nickel-base superalloy to AISI316 Stainless Steel using BNi-2 interlayer performed by transient liquid phase process (TLP) at 1150°C for 5 and 30 minutes. Bonding microstructure was studied using an Optical microscope and a scanning electron microscope (SEM). Vickers hardness test and shear strength test have been used to evaluate the mechanical properties. Microstructural studies showed that at 5 and 30 minutes of bonding time, isothermal solidification is completely formed, and the Center of the joint is free of any eutectic intermetallic compounds. Also, Findings showed that the DAZ of Hastelloy C276 nickel-base superalloy contains rich borides of Ni, Cr, Mo, and W, and the DAZ of 316 austenitic stainless steel contains borides rich in Fe, Cr, and Ni.


A. Pourjafar, R. Dehmolaei, R. Alavi Zaree, Kh. Ranjbar, M.r. Tavakoli Shoushtari,
Volume 8, Issue 2 (1-2023)
Abstract

In this study, the effect of temperature on the microstructure and reactive layer at the interface between the Ti interlayer and the base metal related to the diffusion bonding of Zr702 to A516 low alloy steel was investigated. The joining was done using the spark plasma sintering technique at temperatures of 900, 950 and 1000°C for 30 minutes. Field Emission Scanning Electron Microscope (FESEM) equipped with EDS analysis was used to investigate the microstructure of the interfaces in various joints. Investigations showed that at all temperatures, with the diffusion of atoms and the formation of a reactive layer between the Ti interlayer and Zr702, no intermetallic phases, cracks, porosity and discontinuities were formed at their interfaces. . It was found that increasing the bonding temperature did not cause the formation of new phases and compounds in the interface and only increased the thickness of the reaction layer. The measurement of the thickness of the reactive layer showed that the maximum and minimum amounts of diffusion were 84 microns at 1000 °C and 64 microns at 900 °C respectively

N. Taheri Moghaddam, A. Rabiezadeh, A. Khosravifad, L. Ghalandari,
Volume 8, Issue 2 (1-2023)
Abstract

Despite the increased use of aluminium alloys in several industries, their common concern is the difficulty of joining dissimilar alloys using welding techniques. Based on this, the primary purpose of this research is to assess the mechanical characteristics of dissimilar joining of heat-treatable 6061 and non-heat-treatable 5083 aluminium alloys by gas tungsten arc welding and to discover the link between microstructure and mechanical properties. Similar welds were also implemented and evaluated in order to more properly analyze and compare the outcomes. The quality of the weld generated after establishing the health of the joint using non-destructive testing was evaluated by destructive bending, tensile, metallographic, and hardness tests to check the mechanical and microstructural qualities. The intended dissimilar weld was produced under the parameters of pulse current 120-80 amps, voltage 20 volts, welding speed 15 cm/min, and filler 5356. It should be highlighted that the dissimilar weld had the maximum joint efficiency, and with perfect control of welding settings and the absence of flaws, only 36% loss of strength was recorded when compared to the base metal. Metallographic images revealed that the formation of hot cracks in the dendritic structure of the weld metal is the major cause of strength loss for 5083 similar weld and the production of numerous porosities in the weld metal for 6061 similar welds.


Gh. Khalaj, E. Asadian,
Volume 8, Issue 2 (1-2023)
Abstract

In this paper, the microstructure and mechanical properties of the plain carbon steel-bronze interface of explosive welding and rolling were investigated. Explosive connection was done at two stop distances and with two different thicknesses of explosive material. Rolling of the welded composite was done at both ambient and preheated temperatures of 300 °C and with a constant thickness reduction of 33.3%. The results showed that the wave interface of the steel-bronze connection includes different parts. By rolling, the connection interface was stretched and flattened and the vortex areas were compressed together and in some cases entered the steel field. The steel particles separated from the background along the wave crest and remained as isolated islands in the bronze background. On the other hand, in the areas near the vortex, a part of the bronze flying metal was caught under the wave and was observed as islands separated from the bronze background inside the steel. Porous areas were crushed and compressed as a result of rolling. The rolling force and temperature had partially removed the diffusion barriers and a metal bond had been formed between bronze and steel. During the connection, the voids and shrinkage pores were pressed together due to rolling and the separate borders were close to each other. Explosive joining and cold rolling had increased the hardness in the interface, and hot rolling has led to a decrease in the hardness in the interface. In the hardness test, the welding samples are arranged in the order of the highest impact energy. The effects of welding parameters remain after cold and hot rolling and the hardness rating does not change.


S. Kazemi, G. Khalaf, A. Afsari, M.j. Marzban,
Volume 8, Issue 2 (1-2023)
Abstract

Stainless steel cladding is the formation of an alloy by creating a thin layer of stainless steel on another metal. In this research, a layer of SA240-TP316 austenitic stainless steel was coated on SA516-GR60 steel. Experiments were conducted to compare the mechanical properties of SA240-TP316 and claded SA516-GR60 steel welds in order to investigate the possibility of replacing the SA240-TP316 steel alloy. Examining the results of the chemical analysis of SA240-TP316 alloy shows that the coating has a similar chemical composition to SA240 alloy and with increasing depth, the hardness of the weld metal and the percentage of chromium is higher and the percentage of molybdenum in the weld alloy is lower. Comparing the ultimate strength of SA516 alloy after cladding and welding with SA240 stainless base alloy shows the improvement of tensile strength. In the first case, the strength changes in the range of 470 to 503 MPa and in the second case in the range of 477 to 570 MPa. The highest hardness was obtained in the heat affected area. Bending test showed that bending without cracking up to 180 degree angle is a sign of weld metal remaining ductile. The results of the impact test also show the ability to absorb energy, especially around the voltage of 150 volts.

 

M.r. Borhani, S.r. Shoja Razavi, F. Kermani, M. Erfan Manesh, S.m. Barekat, H. Naderi Samani, M. Shahsavari,
Volume 8, Issue 2 (1-2023)
Abstract

The purpose of this research is to laser cladding of stellite6 and stainless steel 17-4PH powders on the substrate of stainless steel 17-4PH, and investigate its solidification microstructure. The results showed that the microstructure of the stellite6 cladding has a cobalt solid solution ground phase with an FCC structure and Cr7C3 and Cr23C6 carbides. Also, the values ​​of the primary dendrite distance and the distance of the secondary dendrite arm have decreased by moving away from the interface; The reason for this is related to the difference in the cooling rate in different parts of the coating. The microstructure of 17-4PH stainless steel coating includes martensitic, ferritic, and austenitic phases; Due to the same chemical composition of the substrate and the cladding, the weight percentage of elements such as iron, nickel, chromium, and copper did not change from the cladding to the interface. It indicates the uniformity of the chemical composition of the cladding and the substrate. The calculated microhardness for the cladding of stellite6, the substrate and the cladding of stainless steel 7-4PH is about 480, 350, and 350 respectively. The reason for the higher microhardness of the cladding is the presence of chromium carbides (Cr7C3 and Cr23C6) formed in the cobalt field and the cobalt solid solution field of the cladding.
 

F. Harati, M.a. Jabbareh, S.m. Mousavizadeh,
Volume 8, Issue 2 (1-2023)
Abstract

The present research aims to study the liquation and re-solidification of liquid during friction stir spot welding of AZ91 alloy. Although friction stir spot welding is a solid-state process, the presence of Mg17Al12 intermetallic compounds results in liquation during the welding process. In this study, friction stir spot welding was performed with a tool rotational speed of 2500 rev/min and a tool dwell time of 5 seconds. The microstructural assessment was carried out by optical and scanning electron microscopes. The results showed that initiation of liquation from the inner and outer edge of the eutectic precipitates occurred based on the melting of residual eutectic. Moving toward stirred zone, a liquid film formed along the grain boundaries. The liquid re-solidified as a composite structure of α-Mg/, which α-Mg phase dispersed in γ-Mg17Al12 matrix. Also, the results showed that eutectic morphology resulting from re-solidification is related to the cooling rate. Eutectic morphology changed from granular to fibrous by increasing the cooling rate. Also, the liquid film along the grain boundaries re-solidified as a divorced eutectic.

M.m. Jafari, A. Afsari, S.a. Behgozin, Sh. Heidari,
Volume 8, Issue 2 (1-2023)
Abstract

In this study, the mechanical and tribological properties of 4 different types of welding filler metals were examined on a 1.6959 steel (DIN35NiCrMoV12-5) by the Gas Tungsten Arc Welding process. The fillers used in this study include ER70S-6, ER80S-G, ER80S-Ni1, ER80S-B2. The main reasons for choosing these fillers in this study are their availability and close chemical composition to the base metal. To evaluate the weld and quality of weld joints, tensile, impact, hardness and abrasion tests performed on the samples and related microstructures was investigated by optical microscope. The results indicated that the presence of molybdenum and chromium alloying elements in ER80S-B2 filler and related microstructure at HAZ has led to an increase in weld strength up to 38 percent. The best and worst wear resistance obtained from the filler ER 80S-Ni1 and ER 70S-6 respectively. The best weld quality and mechanical properties were acquired in welding using ER 80S-B2 welding filler metal.

Gholamreza Khalaj,
Volume 8, Issue 2 (1-2023)
Abstract

In multi-pass welding, the heat-affected zone formed in each pass is subjected to another thermal cycle by the next pass. This problem locally changes the microstructure of the heat-affected zone depending on the position of each area relative to the melting line of the next pass, and the overlapping of the heat-affected areas will lead to complex microstructures. In this research, based on the practical conditions of pipe production in the factory, including submerged arc welding with four electrodes in two passes from the inside and outside of the pipe, the thermal cycles of the heat-affected zone were first analyzed. Simulation of thermal cycles of heating and cooling up to the peak temperatures of 950, 1150 and 1350 °C was performed in a dilatometer and the transformation behavior and microscopic structure were studied. Simultaneous modeling of precipitation dissolution and austenite grain growth was done. It was observed that the grain growth reaches a limit in 300 seconds. The main cause of grain growth at temperatures below and above 1150 °C, is the dissolution of fine and coarse deposits of niobium carbonitride, respectively. Also, the modeling of austenite formation and decomposition was done using the classic JMAK equation. It was observed that the parameter n does not depend much on temperature; while parameter k strongly depends on temperature, transformation amount and austenite grain size.
 

A. Mahdavi Shaker, H. Momeni, A. Khorram, A. Yazdipour,
Volume 8, Issue 2 (1-2023)
Abstract

This study aimed to investigate the effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of the dissimilar joint between 17-4PH precipitation hardening stainless steel and Ti6Al4V alloy. For this purpose, the welding of these two alloys was done without an interlayer and with an interlayer of copper with a thickness of 0.8 mm. Two different welding speeds of 0.7 and 0.9 m/min with four levels of beam offset  (0, 0.2, 0.4 and 0.6 mm) from the center of the interlayer towards the steel were used to perform experiments. The results show that in the direct welding of titanium and steel, the joint structure consists of TiFe and TiFe2+TiCr2 intermetallic compounds with high hardness (about 900 Vickers). In the welding of titanium and steel by using the copper interlayer, the structure in the weld pool and the interface between the weld pool and steel includes a solid solution of copper and TiFe2 intermetallic compounds, and at the interface between the weld pool and titanium includes Ti+Ti2Cu and TiFe. The hardness of the welding zone in the samples welded with copper interlayer is about 400 Vickers. The highest value of hardness is observed at the interface between the weld pool and titanium alloy, as well as at the interface between the weld pool and steel, which is due to the presence of intermetallic compounds with high hardness. By increasing the welding speed and beam offset, the hardness decreases, which is due to the reduction of brittle intermetallic compounds in the joint structure. The welded sample with a welding speed of 0.9 m/min and beam offset of 0.6 mm has the highest shear strength equal to 160 MPa.
 

R. Hedayatnejad, H. Sabet, S. Rahmati, A. Salemi Golezani,
Volume 8, Issue 2 (1-2023)
Abstract

This research examines the microstructure and microhardness in the additive manufacturing process using the laser metal deposition method with the deposition of Inconel 718 powder on the Inconel 738 substrate. For this purpose, deposition with different laser power was performed on different substrates, and the microstructure and hardness of the layers were studied. Three layers of Inconel 718 powder were deposited on the substrates. The results show that the laser power parameter in the deposition process significantly affects the microstructure of the samples. By increasing the laser power by 100 W, the distance between the phases γ' in the substrate and γ'' in the layers decreased significantly. With increasing laser power, an increase in the geometric dimensions and volume percentage of the γ'' phase was also observed. In addition, increasing the laser power decreased the volume percentage of the Laves phase. By measuring the microhardness of the deposition layers, it was found that the hardness of the third layer decreases with increasing laser power.
 

M.r. Maraki, M. Mahmoodi, M. Yousefieh, H. Tagimalek,
Volume 8, Issue 2 (1-2023)
Abstract

In Wire and arc additive manufacturing (WAAM) based on Gas metal arc welding (GMAW) is one of the methods of manufacturing metal layer by layer. One of this method's basic steps is predicting the welding geometry created in each welding step. In the current research, an experimental study was conducted in this field considering the effective parameters of welding geometry. For this purpose, three parameters of voltage, welding speed, and wire feeding speed were considered as effective parameters on the welding geometry of the process. The width and height of the weld bead was selected as the answer according to the type and application of the research. The least squares support vector machine was used to model the welding geometry in the process. The results obtained from the regression (R2) of train, test, validation, and total were 0.945, 0.793, 0.894, and 0.881 respectively. The comparison between the experimental data and the model data shows the significance of the proposed model.


Page 6 from 8     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb