Search published articles


Showing 149 results for Type of Study: Research

M. Ahmadi, H.r. Ahmadi, M.r. Khanzadeh, H. Bakhtiari,
Volume 9, Issue 1 (5-2023)
Abstract

In this research, friction stir welding of aluminum 1050 to copper with variable speed was investigated. For friction stir welding, rotational speeds of 900 and 1200 rpm and traverse speeds of 36, 63, and 125 mm/min were used. In order to check the phases and microstructure, scanning electron microscope analysis, X-ray spectrometry, and hardness testing were used. The disturbance zone included Al2Cu3, Al4Cu9, AlCu4, Al2Cu, and AlCu phases. The results showed that the formation of intermetallic phases and severe plastic deformation in the welding area caused an increase in hardness. The highest hardness value in the stirred area was 97.8 Vickers at a rotation speed of 900 rpm and an advance speed of 36 mm/min.

A. Lalpour, M. Mosallaee, A. Ashrafi,
Volume 9, Issue 1 (5-2023)
Abstract

In the present study, friction stir processing (FSP) technique was carried out on the AA2024 sheet at different traverse speed (63 to 250 mm/min) and rotation speed (315 to 800 rpm). The temperature and grain size of stirred zone (SZ) were measured and their relationship was analyzed and effect of FSP parameters on the grain size of SZ was determined. Experiment and analytical investigations revealed that SZ grain size complies the exponential temperature-dependent relationship and can be defined the mathematical equation. Calculations indicate that a change in operational variables (rotation and traverse speeds) makes no variation in strain rate, and it is constant.
M. Safari, A. Ahadi,
Volume 9, Issue 1 (5-2023)
Abstract

In the present research, the coating process of Inconel 718 powder on the H13 steel substrate by direct powder deposition method with the help of 1 KW continuous fiber laser has been investigated. Hence, the effects of process parameters such as laser power, powder feed rate and laser scanning speed on the geometrical characterstics of the clad such as height and width of the clad are examined. In order to perform a comprehensive investigation on the effect of input parameters and their interactions on the height and width of the clad, design of experiment method based on response surface methodology is employed. The results show that the laser scanning speed and powder feed rate are as the important factors affecting the clad height, so that the clad height increases with increasing powder feed rate and decreasing laser scanning rate. Also, it is proved that by increasing the laser power and decreasing the laser scanning speed the width of the clad is increased.

A. Mahdavi Shaker, H. Momeni, A. Khorram, A. Yazdipour,
Volume 9, Issue 1 (5-2023)
Abstract

This study aimed to investigate the effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of the dissimilar joint between 17-4PH stainless steel and Ti6Al4V alloy. For this purpose, the welding of these two alloys was performed with an copper interlayer with a thickness of 1 mm. Two different welding speeds of 0.7 and 0.9 m/min with four levels of beam offset  (0, 0.2, 0.4 and 0.6 mm) from the center of the interlayer towards the steel were used to accomplish the experiments. The results show that by using the copper interlayer with thickness of 1 mm, the cracks caused by the formation of intermetallic compounds are removed from the weld pool. At the interface between the titanium and the weld pool, at the beam offset  of 0 and 0.2 mm, a solid solution of copper and TiCu2 intermetallic compounds is formed, while at the beam offset  of 0.4 and 0.6 mm, a solid solution of copper and TiCu intermetallic compounds is formed. The weld pool, at the beam offset  of 0 and 0.2 mm, consists of TiCr2+TiFe2 intermetallic compounds while at the beam offset  of 0.4 and 0.6 mm, solid solution of iron (α-Fe), solid solution of copper and TiCu intermetallic compounds are formed. The highest value of hardness is observed at the interface between the weld pool and the titanium alloy, as well as at the interface between the weld pool and the steel, which is due to the presence of intermetallic compounds with high hardness in these regions. By increasing the welding speed and the beam offset, the hardness value decreases, which is due to the reduction of brittle intermetallic compounds in the joint structure. By increasing the beam offset from 0.4 mm to 0.6 mm at the speed of 0.7 m/min, the shear strength increases from 180 MPa to 210 MPa and at the speed of 0.9 m/min, the shear strength raises from 230 MPa to 250 MPa. The welded sample with the welding speed of 0.9 m/min and the beam offset of 0.6 mm has the highest shear strength equal to 250 MPa. The failure in all samples happened at the interface between the weld pool and the titanium alloy, which shows that the weakest region in the joint is this interface.

M. Niazi, A. Afsari, Seyed A. Behgozin, M. R. Nazemosadat,
Volume 9, Issue 1 (5-2023)
Abstract

Optimization of Stir Friction Welding parameters such as linear and rotational speed of the tool can be effective to a large extent in improving welding properties. In this research, welding of two sheets of Aluminum of Al-7075 and Al-6061 were validated based on theoretical relations and numerical simulation. The simulation of the contact characteristics of the workpieces with the tool was done using the contact algorithms available in the Ansys software. From the FEM, rotational and linear speed and diameter of the tool were selected as design variables, and multi object optimization was carried out with genetic algorithm and RSM to reach the lowest tool temperature and residual stress.The parametric analysis of FSW of the threaded and non-threaded tool pins showed that the generated heat has proportional and inverse relation with rotation and linear speed of tool respectively. Tool with a diameter of 20 mm showed minimum residual stress in the workpiece. By increasing welding speed, the temperature curves become more compact and the effect of thread on heat generation was more evident in all cases at lower heat input.

M.r. Borhani, S.r Shoja-Razavi, M. Erfanmanesh, F. Kermani, S.m. Barekat ,
Volume 9, Issue 1 (5-2023)
Abstract

Inconel 713LC super alloy is one of the most widely used high-temperature alloys. Due to the high level of gamma prime phase caused by Ti and Al alloy more than a critical value, this alloy is considered as one of the non-weldable alloys. One of the basic repair methods of this series of superalloys is laser cladding methods. In this research, the IN713LC  substrate was reconstructed with Inconel 625 powder by a direct laser deposition system. To characterize, optical and electron microscopy tests, porosity measurement, and XRD were carried out; The results showed that the R (growth rate of the dendrite tip) increases at high speeds of laser cladding; as a result, the G/R (combined solidification point) ratio decreases, and the structure tends towards the coaxial dendritic direction. For this reason, by increasing the speed of laser scanning from 4 to 6 mm/s, the coaxial dendritic structure increases. The hardness measurement results indicate a decrease in the hardness up to the junction area from 430 to 370 Vickers and fluctuations of about 50 Vickers. Due to the high solidification speed, the average distance between the secondary dendritic arm space was 0.8 at the bottom, 1.01 in the middle, and 1.75 micrometers at the top of the sample. Due to the high cooling speed, only carbides and lava phases are formed. Also, the porosity measurement results of the cladding indicate a maximum porosity of 0.1 percent.

A. Gandomdoust, M. Sarkari Khorrami, S. F. Kashani-Bozorg, H. Ghorbani,
Volume 9, Issue 1 (5-2023)
Abstract

As one of the important pillars of the fourth industrial revolution, metal additive manufacturing (AM) technologies provide a disruptive approach to digital manufacturing. Laser powder bed fusion (LPBF), as one of these technologies, has great potential in producing geometrically complex and high-performance parts. In recent years, the manufacturing of aluminum alloy parts using this technology has attracted much attention. However, their manufacturing still faces some challenging issues. One of the most serious issues encountered in the manufacturing of aluminum alloys, especially high-strength grades, is solidification cracking. In the present investigation, the formation mechanisms of solidification cracking, and the associated effective factors were reviewed. Controlling the solidification microstructure and grain refinement, using the addition of small quantities (<1 wt.%) of micro- or nano-sized particles to the initial alloying powder, was suggested as the most effective method for reducing solidification cracking. These particles act as nucleation sites, prevent grain growth, pin grain boundaries, and with the help of factors that provide constitutional supercooling can effectively minimize solidification cracking. Eventually, effects of various additives in grain refinement and their associated mechanism in reduction of solidification cracks of high-strength aluminum alloys by LPBF is presented.

N. Abbasian Vardin, T. Saeid, A. R. Akbari ,
Volume 9, Issue 1 (5-2023)
Abstract

In this study, gas-tungsten arc welding was used for the cladding of two high entropy alloys of AlCoCrFeNi (Al1) and Al0.7CoCrFeNi (Al0.7) onto plain carbon steel plates. The welding process was carried out at a welding current of 180 A and a welding speed of 1.4 mm/s. The microstructures, craking behavior, phase composition, and hardness of the clads were characterized using various methods, such as optical microscopy (OM), field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD) analysis, and microhardness measurements. The results indicated that the Al1 clad had a petal-like structure of the BCC and Cr-rich phases. Both intergranular and transgranular cracks were identified in the Al1 alloy, which were recognized to be solidification cracks. Thermal stress and brittleness of the BCC phase promote cracking of the Al1. On the other hand, in the Al0.7 alloy, in addition to the BCC phase, a new FCC phase was  formed with various Widmanstatten and dendritic morphologies in the clad microstructure and the Cr-rich phase was not observed. Furthermore, in this alloy with lower Al content, a crack-free clad was obtained. The crack prevention in the Al0.7 alloy was attributed to a combination of factors, including a decrease in the solidification range, formation of the FCC phase, and reduction in hardness.

M.h. Nourmohammadi, M. Movahedi, A.h. Kokabi, M. Tamizi,
Volume 9, Issue 1 (5-2023)
Abstract

The miniaturization and compaction trends in electronic equipment and the removal of lead (Pb) element from solder alloys due to environmental considerations have created a great challenge in the field of designing and developing of new solder alloys. Therefore, researchers have recently focused on composite solder alloys using reinforcing particles to improve the reliability of lead-free solders. In this research, SAC0307 solder alloys (99 wt.% Sn, 0.3 wt.% Ag, and 0.7 wt.% Cu) with different percentages of cobalt microparticles were made by the Accumulative Roll Bonding (ARB) method. Then, the effect of the particles on wettability, microstructures and mechanical characteristics of solder alloys was investigated. The lowest contact angle was 23◦in 0.2 wt.% cobalt sample. By adding cobalt to the solder matrix, the size of intermetallic compounds (IMCs), Cu6Sn5 and Ag3Sn, decreased and the percentage of eutectic phases increased. The shape of the interfacial intermetallic compounds changed from scallop to layer shape by adding cobalt, and their average thickness increased about 13-71% in composite samples. The shear strength of solders increased up to 38% by enhancement of cobalt microparticles in the solder alloy containing 0.4 wt.% cobalt; however, shear strength was decreased in the composite solder containing 1 wt.% cobalt due to the agglomeration of microparticles. The shear fracture surfaces showed that the nature of the fracture changed from ductile fracture in the form of elongated dimples to brittle fracture in the form of cleavage with the increase in the percentage of cobalt microparticles. The composite solder alloys containing 0.2-0.4 wt.% Co have the best wettability behavior and tensile shear strength.

Gh. Khalaj, A. Fadaei,
Volume 9, Issue 1 (5-2023)
Abstract

In this research, the effect of post weld heat treatment on the microstructure and mechanical properties of the three-layer explosion welding joint of austenitic steel 321-aluminum 1050-aluminum 5083 was investigated. The welded samples were heat treated at 250 and 350°C for 10000 seconds. The structure and properties were investigated using optical microscope, scanning electron microscope, microhardness measurement and shear-compressive strength. The results showed that in all conditions, the interface of aluminum 5083-aluminum 1050 was smooth and with complete continuity; However, the interface between stainless steel 321 and aluminum 1050 had a reaction layer with variable and discontinuous thickness. During the heat treatment, the thickness of the interface layer increases according to the diffusion kinetics and reaches 18.6 microns in the maximum value. With the increase of heat treatment temperature, the average concentration of aluminum in the reaction layer of the interface increased from 85% to more than 90%, but the concentration of iron decreased from 10% to less than 5%. Also, shear-compressive strength decreases from 94.6 to 56.7 MPa.

L. Gadami Domabi, S. M. Rafiaei, S. Jahanbazi Gojani,
Volume 9, Issue 1 (5-2023)
Abstract

In this paper the production of chitosan and polylactic acid polymer scaffolds containing zinc oxide particles was carried out through the 3D printer method. Zinc oxide particles were processed through combustion synthesis method. According to the XRD results, the produced oxide has a high phase purity, and the evaporation of volatile impurities and the increase of crystallinity happened via performing the calcination process. In the X-ray diffraction pattern of PLA/ZnO/Chitosan, the broad peak in the range of 10-25 degrees indicates the amorphousness of the background polymer, and with the addition of ZnO, sharp and powerful peaks have appeared in the graph. The SEM images of zinc oxide synthesized by combustion method also showed that the size of ZnO nanoparticles is approximately 50 nm, while after the calcination heat treatment, the size of the particles increased greatly and reached an average size of 130-160 nm. Finally, the microscopic images obtained from the surface of scaffolds possessing 10% zinc oxide, 5% chitosan and polylactic acid showed that by optimizing the 3D printer,  ZnO particles are uniformly dispersed in PLA/Chitosan polymer field.

Ali Adelian, Khalil Ranjbar, Mohammadreza Tavakoli Shoushtari,
Volume 9, Issue 2 (8-2024)
Abstract

This research studied the effect of two-stage over aging treatmenton the pitting corrosion behavior and microstructure of the weld metals in the 17-4 precipitation hardening stainless steel. For this purpose, this steel was subjected to solution annealing heat treatment at 1035°C for one hour before welding. Then gas tungsten arc welding (GTAW) was performed using ER630 similar filler metal. Subsequently, a section of the weldment was subjected to two-stage over aging treatment. The microstructure and corrosion resistance of the weld zone after the two-stage over aging treatment were investigated and compared with the weld zone behavior in the as-weld condition. Microstructural studies showed that the two-stage over aging treatment of the weld zone led to the tempering of the martensitic, the formation of more reversed austenite, and the formation of α-ferrite. The volume fraction of austenite in the as-weld condition was approximately 7% and increased to about 30% after two-stage over aging treatment, a four-fold increase. The pitting potential (EPit) of weld metal was -18.15 mv in the as-weld condition and reached 122.54 mv after two-stage over aging treatment, which also signifies an improvement in pitting resistance. The two-stage over aging treatment also reduced the potential differences between the different parts of welding zones reducing the galvanic corrosion occurrence. The assessment of mechanical properties through impact test revealed that impact resistance after two-stage over aging treatment can be increased by about 66 % compared to as-weld condition.
Ali Khorram, Hassan Habibi, Alireza Yazdipour,
Volume 9, Issue 2 (8-2024)
Abstract

This study aimed to investigate the effect of diffusion welding parameters on the microstructural characteristics and mechanical properties of the dissimilar joint between 418 steel and Inconel 738 superalloy using Ni interlayer with a thickness of 50 µm. The experiments were performed in a vacuum furnace at three temperatures of 1000, 1050 and 1150 °C for 45, 60, 75 and 90 min under the pressure of 5 MPa.The results show that voids and non-bonded areas are seen in the samples that were bonded at a lower temperature (1000 °C). By increasing the joining temperature from 1000 °C to 1050 °C, all micro discontinuities have disappeared, which shows that the microplastic deformation of roughness has improved. Then, by increasing the temperature to 1150 °C, non-bonded areas are observed in the joint due to the reduction of pressure on the contact surfaces. When pure nickel is used as an interlayer, intermetallic compounds of γ' [Ni3(Al, Ti)] are formed in the γ matrix phase on the side of Inconel 738 superalloy while compounds of FeNi3 and γ (γFe, Ni) are formed on the side of 418 steel. According to the results of line scan analysis, the slope and penetration of elements in Inconel 738 superalloy is lower than 418 steel, which indicates less penetration in Inconel 738 superalloy. In the sample welded at the temperature of 1050 °C and the time of  90 Min, the penetration value of the nickel interlayer in 418 steel and Inconel 738 superalloy was 40 µm and 35 µm, respectively. By comparing the maximum hardness, it can be concluded that the joint at the temperature of 1050 °C and the time of 90 Min has a lower maximum hardness than other samples. Therefore, it has better joint characteristics than other samples in terms of intermetallic compounds. The highest value of shear strength was obtained at the temperature of 1050 °C and the time of 90 Min, which is equal to 270 MPa.
 
M. R. Borhani, M. Rajabi, R. Shoja Razavi, R. Jamaati,
Volume 9, Issue 2 (1-2024)
Abstract

Reconstruction of parts using direct laser deposition can create a combination of high wear resistance properties, good toughness, and  corrosion resistance. In this research, the wear properties of Inconel 625 powder cladding on the same substrate have been investigated; For this purpose, room temperature and high temperature wear tests have been used. Mass reduction, friction coefficient, width and depth of wear penetration have been measured. Also, a scanning electron microscope with an energy disspersive spectroscopy system was used to evaluate the cladding surface. The results showed that the mass reduction due to wear at Inconel 625 cladding compared to Inconel 625 substrate has decreased by 7% and 52%, respectively, at temperatures of 25°C and 620°C. Also, the wear mechanism of the room temperature of the cladding is mainly scratchy, and the wear mechanism of high temperature is mainly sticky.

M.r. Hajiha, A. Farzadi, S. A. Samadani Agdam, A. Shabanzadeh, S. Ramezani,
Volume 9, Issue 2 (1-2024)
Abstract

5xxx and 6xxx series alloys are among the most widely used aluminum alloys in various industries, including automobile, shipbuilding and aviation industries. In this research, the joint of two alloys AA6061-T6 and AA5052-H12 was investigated at 4 transmission speeds of 60, 90, 120 and 180 mm/min and 3 rotation speeds of 600, 800 and 1000 rpm. These investigations were carried out in the condition that each of the two alloys was placed in two progressive and regressive sides. The results of these studies showed that the highest tensile strength is when the AA5052 sample is placed on the advancing side and the transfer speed is 90 mm/min and the rotation speed is 600 rpm, and in this case, the final tensile strength value is equal to 197 MPa. In addition, the results showed that, generally, the tensile strength decreases with an increase in the transmission speed at a constant rotational speed, and with an increase in the rotational speed at a constant transmission speed, the tensile strength increases. In addition, microscopic and macroscopic examination of the sections of all samples was performed and various areas and defects were examined. According to the investigations carried out on the microstructure, the grain size in the weld nugget compared to the base metal, HAZ and TMAZ decreases. The grain size in HAZ is the largest in all samples, and this causes a decrease in weld strength in this zone.

R. Mahdizade, S. A.asghar Akbari Mousavi, S. Mehdipour,
Volume 9, Issue 2 (1-2024)
Abstract

In this study, non-homogenous welding of nimonic 75 superalloy to Monel 400 with 1 mm thickness was investigated with pulsed Nd:YAG laser welding. The mechanical properties of the joint were analyzed with optical and scanning electron microscope, X-ray diffraction, micro-hardness test and tensile test. In the case of non-homogeneous welding of Nimoinc 75 superalloy to Monel 400, defects such as liquation cracks and porosity in the welded samples were observed. these defects were removed with increasing the preheating temperature and decreasing the heat input. The results showed the voltage, pulse width, pulse frequency and welding speed should be selected as 500 volts, 9 milliseconds, 3 Hz and 0.9 mm/s respectively to reach the proper penetration depth. Also, the investigations show that the welding structure is composed of austenitic matrix containing columnar dendrites and some cellular areas. The mechanical properties of the weld metal were reduced after joining and segregation causes a change in the amount of elements and the appearance of intermetallic compounds in the spaces between dendrites and cells. All non-homogeneous samples broke during the tensile test from the weld metal area.

M. Bozorgmehr, A. Heidari, K. Amini, M. Loh Mousavi, F. Gharavi,
Volume 9, Issue 2 (1-2024)
Abstract

In the present study, friction stir process (FSP) was used to produce AL/ZrO2/ZrSiO4 surface hybrid composite at a fixed rotation speed of 1400 rpm and traverse speeds of 20, 25, 31.5 and 40 mm/min. Therefore, the purpose of the mentioned study is to investigate the effect of tool traverse speed on the microstructure, hardness and wear behavior of the above-mentioned surface hybrid composite and compare it with base material aluminum 5052. Investigations showed that as a result of FSP operation, a fine-grained structure is created, which improves the hardness and wear resistance of the samples compared to the base sample with the presence of ZrO2 and ZrSiO4 particles. Also, the results showed that among the FSP samples, the sample with a speed of 20 mm/min has the highest hardness and wear resistance. The reason for this is that in this sample, due to the lower traverse speed compared to other samples, more heat has been generated, which has led to more suitable particle distribution and more fine particles. Therefore, in the sample with the traverse speed of 20 mm/min, the hardness and wear resistance increases by 27.3% and 68.9% respectively compared to the base material sample. Also, the examination of the wear surfaces of the samples showed that the wear mechanism in the base sample is strong adhesive wear, and as a result of the FSP operation and surface compositing due to the fineness of the grains and the increase in hardness, the wear mechanism has become weak adhesive, so the wear resistance of the sample is FSPs have been improved.
 

Mohammad Reza Borhani, Reza Shoja Razavi, Farid Kermani,
Volume 9, Issue 2 (8-2024)
Abstract

In this study, the effect of friction stir welding (FSW) parameters on the dissimilar joint properties of 5083 aluminum alloys and 316L austenitic stainless steel, with a thickness of 4 mm, has been investigated. The tool speed was considered in the range of 16 to 25 mm/min, and the rotation of tool speed was considered to be equal to a constant speed of 250 rpm. To check the microstructure of different weld areas, optical and scanning electron microscopes were used, to check the mechanical properties, hardness and tensile tests were performed. The results showed the formation of a composite region consisting of steel reinforcement particles in the field of aluminum.
At the steel-aluminum interface, a single layer of discontinuous intermetallic composition with a thickness of about 2 micrometers was observed; Also, by choosing the rotation speed of 250 rpm and the tool speed of 16 mm/min, the tensile strength equal to 298 MPa and ductility of 26% (93% of tensile strength and 50% of ductility of aluminum 5083 alloy) were obtained.

A. Etemadi, M. Kasiri-Asgarani, H. R. Bakhsheshi-Rad, M. Sadeghi Gogheri,
Volume 9, Issue 2 (1-2024)
Abstract

In this research, dissimilar joining of biodegradable AZ31 alloy to Ti-6Al-4V titanium alloy by rotary friction welding method was investigated with aim of preparation of pin or screw for orthopedic applications. optical and scanning electron microscope (sem) were used to investigate the microstructure, x-ray diffraction was conducted for phase analysis, torsion and micro-hardness tests were carried out to investigate mechanical properties, and polarization and electrochemical impedance spectroscopy were employed to evaluate corrosion resistance. in the welding procedure, rotational speed of 1100, 1200 and 1300 rpm and friction time of 2 and 4 seconds were considered as variable parameters, and two parameters of friction pressure and forge pressure were considered as constant parameters at 50 and 40 MPa, respectively. The microstructure of the joint zone showed that there is no deformation in the titanium alloy side. However, in the magnesium side, the greatest amount of deformation occurred with the distance from the joint line, where weld center zone (CZ), dynamic recrystallization zone (DRX), thermomechanical affected zone (TMAZ) and partial deformation zone (PDZ) are detected. The formation of intermetallic phases such as Mg2AlZn, Ti3Al and also the refining the grains size is the main reason for increasing the hardness of the magnesium side near the joint line up to 150 HV. The results of the torsion test showed that the welded sample has the highest shear strength of 81.51 MPa and also the highest corrosion resistance among other samples at a rotation speed of 1200 rpm and a friction time of 4 seconds.

Mohammad Reza Maraki, H. Tagimalek, Dr Mohammad Yousefieh, , ,
Volume 9, Issue 2 (8-2024)
Abstract

Society's great and growing demand for buildings and structures has created the need to apply new construction methods to shorten construction times, make buildings lighter, extend their useful life, and make them more earthquake-proof. In the long term, the new methods will lead to structural optimization, increased building performance, and the achievement of optimal operating conditions. New technologies are meeting society's increasing need for special structures more than ever. Additive manufacturing is based on gas metal arc welding as one of the fastest and most cost-effective manufacturing methods for primary metal structures. For this purpose, the three parameters voltage, wire feed speed, and welding speed were considered initial parameters affecting the width and height of the welding flux. To investigate the effects of the process, 16 experiments with input parameters were evaluated. The width and height of the sweat pollen were determined by experimental investigations. Subsequently, the resulting welding geometry is modeled using three numerical modeling methods, including intensive learning machines, relevence vector machine, and fuzzy logic. The comparison between the experimental data and the results of the three generated models shows that fuzzy logic comes closest to the experimental data of the welding geometry of the modeling methods. For example, the test data of the generative fuzzy model resulted in an average error for height and width of 0.667 and 0.5477, respectively, and a root mean square error for height and width of 0.0046 and 0.3, respectively, which expresses the generalization ability and reliability compared to other modeling methods in this process. Finally, a metal pattern of a special structure was produced based on arc and wire additive manufacturing based gas metal arc welding. 

Page 7 from 8     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb