Search published articles


Showing 165 results for Type of Study: Research

H. Abedi Chermahini, M. Piran, A. Esmaeili Chamgordani, M. Atapoor,
Volume 10, Issue 2 (12-2024)
Abstract

In this research, the mechanical and microstructural properties of AISI 316L sheets welded by RSW method using copper interlayer were investigated. In this regard, two types of connections were made, one without the use of an interlayer and the other with the use of a copper interlayer in different currents. In order to choose the optimal current for both types of connections, tensile tests were first performed, and microstructural, microhardness, elemental evaluation and failure mode tests were conducted on the selected samples. According to the obtained results, by increasing the electric current, the heat input in the welding pool is sufficiently high and the microstructural and mechanical properties of the welding zone were improved(Conversion of coarse grain to fine grain). Also, due to the optimality of the electric current in both samples with and without the interface layer, both samples had environmental failure, which indicates the high strength of the interface and their welding point. Changes in the chemical composition in different welding zones were insignificant and the distribution of elements was uniform in all zones. Also, the hardness changes from the base metal to the center of the welding zone were in the order of welding zone > base metal > heat-affected zone, which was consistent with the results obtained from the microstructural investigations. According to the results obtained for both cases with and without the use of an interface layer, the resistance spot welding method showed a successful connection for both types of cases.

H. Abedi Chermahini, M. Atapoor, M. Esmailzadeh,
Volume 10, Issue 2 (12-2024)
Abstract

Nowadays, in order to achieve the combined properties of multiple alloys for important applications such as automotive and marine industries, the use of cladding method is common. Cladding, which is a type of coating through welding, is one of the widely used methods for surface modification of metal parts and sheets in industry. AH36 low-alloy steel is a steel used in shipbuilding, known for its toughness and good corrosion resistance, making it a significant condidcate among other steels used in this industry. In this research, to enhance the corrosion properties of AH36 steel, the cladding process was performed using Gas Tungsten Arc Welding (GTAW) with copper/nickel filler wire. Two samples, one from the coated (weld metal) and one from the uncoated (base metal) sections, were prepared and subjected to microstructural and corrosion investigations. The results indicated an increase in grain size in the heat-affected zone of the weld metal sample, leading to a reduction in mechanical properties. The cyclic polarization test showed that the base metal had higher susceptibility to pitting corrosion compared to the weld metal. Additionally, the weld metal exhibited a higher tendency for repassivation or repairing of the pits. The results of the electrochemical impedance spectroscopy (EIS) test indicated that both the base metal and weld metal samples had a single-loop equivalent circuit. The larger diameter of the Nyquist semicircle for the base metal compared to the weld metal suggests better uniform corrosion behavior of the base metal relative to the weld metal.

M. K. Vojdanpak, B. Niroumand, M. Shamanian,
Volume 10, Issue 2 (12-2024)
Abstract

Despite rapid advancement of additive manufacturing methods in recent years, sufficient research on bonding of additively manufactured materials to conventional alloys has not been conducted. This study evaluates the bonding between austenitic stainless steel L316 and Ti-6242 alloy, fabricated by electron beam melting, using the transient liquid phase (TLP) bonding method. The TLP bonding was achieved using a copper interlayer and processing in a vacuum furnace, examining the effects of process time and surface roughness on bond quality. The samples were characterized by optical and scanning electron microscopy, X-ray diffraction, shear strength testing, and surface roughness measurement. Results showed that reducing the surface roughness increased the shear strength. Additionally, processing time significantly affected the element diffusion, formation of intermetallic compounds like FeTi and TiCu, and the shear strength of the joints. The highest shear strength of 200 MPa was obtained with surface preparation by grinding and polishing and bonding at 980°C for 120 minutes.

Kh. Ranjbar, A. Firoozi, F. Shahriari Nogoorani, S. F. Ziaee,
Volume 10, Issue 2 (12-2024)
Abstract

Plain carbon steels are widely utilized in various industrial applications primarily due to their low cost. However, these steels often fall short in terms of mechanical properties and wear resistance. The deposition of hard and wear-resistant coatings on these steels significantly enhances their performance and extends their range of applications. Colomonoy 6, is a nickel-based superalloy, enhance hardness, erosion resistance, wear resistance, and corrosion resistance on the applied surfaces. The study investigated the application of weld overlay using colomonoy 6 on a plain carbon steel, aimed to create a hard and wear-resistant surface. The overlaying processes were performed using plasma transfer arc welding and gas tungsten arc welding under identical conditions. Microstructural characteristics were examined through optical and electron microscopy, and Phase analysis was performed using X-ray diffraction technique. The wear behavior of the weld overlays was evaluated using pin-on-disc wear testing at three different temperatures: 25 °C, 300 °C, and 600 °C, using an alumina pin. The microstructural investigation revealed the formation of dendritic nickel-rich solid solutions and interdendritic carbide and boride phases within the overlays, contributing to improved hardness and wear properties. Results demonstrated that in both overlaying methods, the wear mechanism at room temperature was mild abrasive, whereas at 600 °C, it was plastic deformation, exhibiting a wear track depth of approximately 33-35 μm, and 50-55 μm, respectively. In both overlayed metals, an approximate Vickers hardness number of 600 was measured a 4-fold increase in hardness of substrate. This finding suggests that factors other than hardness, such as microstructural stability and phase distribution at elevated temperatures, play significant roles in wear performance.

E. Ranjbarnodeh, P. Raissi , A. Kolagar , M. Cheraghzadeh,
Volume 10, Issue 2 (12-2024)
Abstract

Nickel base superalloy IN738LC is widely used in power plant industry and gas turbine blade manufacturing. The main strengthening mechanism of this alloy is the precipitation hardness caused by γ′ precipitates. These precipitates play an important role in determining the mechanical properties of this alloy and their amount and morphology changes under heat treatment. In this research, in order to investigate the evolution of γ' precipitates during heat treatment, a number of solution annealed samples were subjected to arc heat treatment. In this heat treatment, by applying heat caused by a static arc, a temperature ranges from the ambient temperature to above the melting point is created in the sample. Using this process, samples with 100 amp currents were heat treated for 1, 2 and 15 minutes. Electron microscope, image processing and transient heat transfer model with axial symmetry were used for experimental and mathematical investigations. In the following, using the experimental and numerical results simultaneously, a mathematical model for the dissolution kinetics of γ' precipitates in the heat-affected zone of these welds was presented. The results of electron microscopy showed that the dissolution rate and shape of γ′ precipitates are strongly influenced by the distance from the heat source. The activation energy of dissolution of γ′ precipitates increased with increasing time and its value was between 40 and
80 kJ/mol.

Page 9 from 9     

© 2025 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb