Search published articles


Showing 8 results for Dehmolaei

Mohammad Jula, Reza Dehmolaei, Seyed Reza Alavi Zaree,
Volume 2, Issue 2 (Journal OF Welding Science and Technology of Iran 2016)
Abstract

In this paper, maximum value of energy to break at Charpy impact test as a criterion of fracture toughness of AISI 316/A387 Gr.91 weld joints with ERNiCrMo-3 filler metal were obtained by optimization of pulesd current gas tungsten arc welding process parameters. The selected parameters were peak current, background current, frequency and on time percentage that were changed in three levels. Therefore a L9 orthogonal array of Taguchi design including nine experiments for four parameters with three levels (34) was used. Analysis of signal to noise (S/N) ratio indicated that optimized values of peak current, background current, frequency and on time percentage were 120A, 90A, 10Hz and 80%, respectively. The welded specimen with optimized parameters showed an energy to break at Charpy impact test value of 65J at -20°c. The obtained results also demonstrated that the most influence on energy to break values belonged to background current, frequency, peak current and on time percentage, respectively. 


A. Mahab, M. Farzam, R. Dehmolaei,
Volume 4, Issue 1 (Journal OF Welding Science and Technology of Iran 2018)
Abstract

The effect of heat input of submerged arc welding process on the corrosion bahavior of weld metal of API X42 gas pipeline steel weld joint was investigated. For this purpose, 6 annealed sheets of 15mm thickness were prepared from the X42 microalloyed steel. Submerged arc welding process with varying heat input of 37.8, 18.9 and 12.6 kJ/mm was used for joint welding. Then potentiodynamic polarization and electrochemical impedance spectroscopy methods were used to evaluate the corrosion behavior of the welded joints (in 3.5% NaCl solution). The evaluation of the microstructures of the welded metals in the weld joints were conducted using the scanning electron microscopy. X-ray diffraction was used for the analysis of the phases formed in the weld metal microstructure. Scanning electron microscopy observations and patterns obtained from the X-ray diffraction showed that the increase in heat input resulted in the increase in the amount of ferrite. The grain size also increased. Corrosion test results showed that by increasing the heat input of the weld process, the corrosion resistance increased..
M. Afzali, R. Dehmolaei, E. Hajjari,
Volume 5, Issue 1 ((Journal OF Welding Science and Technology 2019)
Abstract


R. Dehmolaei, M. S. Raeisi Sarani, K. Ranjbar,
Volume 6, Issue 2 (Journal OF Welding Science and Technology 2020)
Abstract


Z. Shahryari, I. Keivanrad, K. Gheisari, K. Ranjbar, R. Dehmolaei, S. R. Mousavi,
Volume 6, Issue 2 (Journal OF Welding Science and Technology 2020)
Abstract

In this study, Inconel 617 alloy was welded to A387-Gr.11 low-alloy steel using ER309L filler metal via gas tungsten arc welding (GTAW). First, the corrosion behavior of Inconel 617, A387-Gr, and the weld metal was evaluated by the Tafel polarization test and electrochemical impedance spectroscopy (EIS) in acidic (H2SO4), neutral (NaCl), and combined (H2SO4 + NaCl) solution at ambient temperature. The results of polarization and EIS measurements in all corrosive solutions indicate that the corrosion resistance decreases from 617 alloy to weld metal and from weld metal to low-alloy steel, respectively. The Comparison of the polarization curves of the base metals and the weld metal showed susceptibility to galvanic corrosion between Inconel 617 / weld metal in 1M NaCl solution. The behavior of galvanic corrosion of this pair was evaluated using the mixed potential theory and the electrochemical noise measurement. The results showed that in a galvanic couple of alloy 617 / weld metal, the weld metal acts as anode and corrodes in such a way that its corrosion rate increases from 0.22 μA/cm2 before joining to 1 μA /cm2 after joining.
Mehdi Asle Taghipour, Reza Dehmolaei, Seyed Reza Alavi Zaree, Mohammad Reza Tavakoli Shoushtari,
Volume 7, Issue 1 (Journal OF Welding Science and Technology 2021)
Abstract

The microstructure and mechanical properties of HSLA-100 steel weld joints was investigated. Welding with three heat input of 0.820, 1.176 and 1.392 kJ / mm was performed using E12018 electrode. Microstructural studies were performed using scanning electron and optical microscopes. The mechanical properties of welded joints were evaluated by impact and microhardness tests. Microstructural studies showed that with increasing the heat input, the amount of acicular ferrite in the weld metal decreased and the amount of polyhedral and quasi-polygonal ferrite increased. It was found that with increasing the heat input, the amount of layered bainite in the heat affected zone increased and the amount of granular bainite decreased. Due to the decrease in the amount of acicular ferrite in the weld metal microstructure with increasing inlet temperature, the amount of hardness and impact energy decreased. The results showed that the increase in heat input due to the reduction of the acicular ferrite of the weld metal and the dissolution of precipitates in the coarse grain heat affected zone has caused a decrease in hardness in these zones. It was found that with increasing the heat input due to decreasing the acicular ferrite, the impact energy of the weld metal decreased by 29% (from 45 joules at an heat input of 0.82 to 32 joules at an heat input of 1.392 kJ / mm). It was found that at all heat inputs, the impact energy of the base metal is greater than the impact energy of the weld metal.
 

I. Saydi, R. Dehmolaei, Kh. Ranjbar,
Volume 8, Issue 1 (Journal OF Welding Science and Technology 2022)
Abstract

In this research, the diffusion bonding of the stabilized zirconia ceramic and Nimonic 105 superalloy using Ti/Nb/Ni multi-interlayer was carried out. Joint was performed using the plasma spark technique in a vacuum atmosphere and at different temperatures and times. The microstructure of the different joint zones was studied using optical and FESEM microscopes equipped with an EDS analyzer. The results showed that the critical region is Ti/3YSZ interface and in all conditions diffusion bonding in Ti/Nb, Nb/Ni, and Ni/NI 105 interfaces were done. Microstructural observations showed that in the Ti/3YSZ interface at all temperature and time conditions, the connection of two separate regions including Ti3O and (Zr, Ti)2O was formed due to the difference in the diffusion depth of Ti, Zr, and O elements and with increasing temperature and time, the thickness of these regions increased. Microstructural studies showed that the bond at 900  and 30 minutes did not have any cracks and discontinuities and due to the better diffusion of atoms, a suitable reaction layer was formed. Microhardness observations and EDS analyses confirmed that the Ti3O reaction layer is the weakest zine.

A. Pourjafar, R. Dehmolaei, R. Alavi Zaree, Kh. Ranjbar, M.r. Tavakoli Shoushtari,
Volume 8, Issue 2 (Journal OF Welding Science and Technology 2023)
Abstract

In this study, the effect of temperature on the microstructure and reactive layer at the interface between the Ti interlayer and the base metal related to the diffusion bonding of Zr702 to A516 low alloy steel was investigated. The joining was done using the spark plasma sintering technique at temperatures of 900, 950 and 1000°C for 30 minutes. Field Emission Scanning Electron Microscope (FESEM) equipped with EDS analysis was used to investigate the microstructure of the interfaces in various joints. Investigations showed that at all temperatures, with the diffusion of atoms and the formation of a reactive layer between the Ti interlayer and Zr702, no intermetallic phases, cracks, porosity and discontinuities were formed at their interfaces. . It was found that increasing the bonding temperature did not cause the formation of new phases and compounds in the interface and only increased the thickness of the reaction layer. The measurement of the thickness of the reactive layer showed that the maximum and minimum amounts of diffusion were 84 microns at 1000 °C and 64 microns at 900 °C respectively


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb