Search published articles


Showing 33 results for Stainless Steel

M. Ahl Sarmadi, M. Shamanian, H. Edris, A. Behjat, M.a. Mohtadi Bonab, J. Szpunar,
Volume 1, Issue 1 (1-2016)
Abstract

In this study the microstructure and mechanical properties of super duplex stainless steel UNS S32750 welding was studied. For this purpose, the method of gas tungsten arc and filler metal AWS ER2594 with a diameter of 4.2 mm was used. In order to investigate the microstructure light microscopy and electron microscopy equipped with backscatter electron diffraction were used. Mechanical properties were studied by hardness and tensile tests. Weld metal had  Cast structure with austenite in the dendrite form  located in ferrite matrix. It was also observed in the melting zone after welding, the ferrite volume fraction decreased to 50 percent 60% base metal ferrite) ,Due to the low cooling rates and  high heat input method in the gas tungsten arc welding. Vickers micro-hardness test method was carried out on the samples showed that average about 285 Vickers hardness of base metal; however, hardness in the fusion region due to increased austenite fraction fell to 250 Vickers. But hardness in the heat-affected zone due to lower volume fraction of austenite and ferrite phase formation of chromium carbide intermetalic compounds increased to 340 Vickers. The results of the tensile test showed that the tensile strength decreased with increasing heat input, because of increase the size of grains due to the increased heat input.


R. Ghasemi, E. Heshmat Dehkordi, M. Shamanian,
Volume 2, Issue 1 (8-2016)
Abstract

In this study, microstructural features and mechanical properties of Incoloy 825-316L stainless steel dissimilar joints have been investigated. For this purpose, pulsed gas tungsten arc welding method was employed and 316L, Inconel 82 and Inconel 625 alloys were used as filler metal. First, specimens were cut. Pulsed gas tungsten arc welding was performed using peak and base currents of 220 A and 110 A, respectively. Microstructure of welded joints was studied using metallographic observations and energy dispersive spectroscopy (EDS) analysis. In order to evaluate the mechanical properties, tensile and microhardness measurements were done on the joints. In all specimens, dendritic and equiaxed and/or cellular growth of austenite phase was observed. Incoloy 625 weld metal had the finest dendritic structure. Tensile test results revealed the ductile fracture with a high percent of elongation for all specimens. The highest tensile strength and percent of elongation of 610 MPa and 48% were obtained for specimen welded using Inconel 625 filler metal. Inconel 625 and 316 stainless steel weld metals showed the highest and lowest microhardness with values of 232 HV and 224 HV, respectively.  


H. Ghasemi Tabasi, A. H. Kokabi,
Volume 2, Issue 2 (11-2016)
Abstract

The aim of this study is to reach an increased service life for parts using in sour environment by weld overlaying process. In this investigation, two successive layers of ER410NiMo were clad on low alloy steel substrates. To reduce the likelihood of Hydrogen Induced Cracking (HIC) and producing stable hydrogen traps, Post Weld Heat Treatment (PWHT) was conducted. Microstructural analysis, X-ray diffraction studies, and mechanical tests show significant increase for austenite volume fraction after second stage of PWHT. In fact, not only two-stage PWHT  reduce the samples hardness, but it also increases austenite volume fraction which is a more resistant microstructure against hydrogen cracking.


Mahdi Lashkari Ghoochani, Behrooz Beidokhti,
Volume 2, Issue 2 (11-2016)
Abstract

In this research 420 martensitic stainless steel welded with the ER308L, ER309L and ER420 fillers by GTAW method. The corrosion properties of  the samples has been studied in 3.5% NaCl solution with and without CO2. Potentiodynamic polarization used to obtain the ER308L and ER309L have the best corrosion properties. In addition the welding process makes the 420 HAZ zone to be sensitized. The pitting potential of the samples has been decreased in presence of carbon dioxide. Furthermore, by adding CO2 to the solution the pH has been decreased and the corrosion potential reached near the -500 mV/SCE and the passivity current is also lowered.


M. Safari, H. Mostaan,
Volume 2, Issue 2 (11-2016)
Abstract

In this paper, resistance spot welding process of AISI 201 stainless steel is studied experimentally. For this purpose, effect of welding current on quality of weld is investigated and relationships between welding current and fusion zone characteristics are examined. For determining mechanical properties such as maximum load and fracture mode, tensile - shear test of spot welds is performed.  Hardness and microstructural examinations are performed for study the influence of welding current on characteristics of welded joints. The results show that strength of resistance spot welds of AISI 201 stainless steel is increased with increase in welding current. Transition of fracture mode from interfacial to pullout and then pullout with tearing of sheet mode during tensile-shear tests of AISI 201 spot welds is investigated through experimental and theoretical approaches. It is concluded from results that increasing in welding current leads to change in fracture mode from interfacial to pullout mode due to increase in fusion zone size (weld nugget size). Also, it is observed that increasing in fusion zone size is accompanied by an increase in load carrying capacity of resistance spot welds. The minimum required fusion zone size to ensure pullout fracture mode is estimated using an analytical model. 


B. Sadeghi, H. Sharifi, M. Rafiei,
Volume 3, Issue 1 (8-2017)
Abstract

In this research, the microstructure and mechanical behavior of dissimilar joint of AISI 321 stainless steel to ASTM A57CL1 were studied. For this purpose, the GTAW process and ER 308L filler metal with diameter of 1.8 mm were used. In order to study the microstructure and fracture surface of weld samples, optical microscope and scanning electron microscope (SEM) were used. Also, the mechanical behavior of the joint was examined by impact, tension and microhardness tests. It was found that the microstructure of weld metal was austenite with skeletal ferrite. Also in some areas the lacy ferrite was seen. All samples were fractured from ASTM A537CL1 steel with a ductile manner during the tension test. The weld metal indicated high impact energy about 205 J. 
M. Ahl Sarmadi, M. Shamanian, M. Atapour, H. Edris, A. Behjat,
Volume 3, Issue 1 (8-2017)
Abstract

In this study, the corrosion behavior of super duplex stainless steel UNS S32750 and tungsten arc welding with filler metals AWS ER2594 duplex stainless steel in acidic solution containing chloride ions have been investigated. Microstructure of weld joints evaluateby light and electron microscope and corrosion behavior examine by open circuit potential and cyclic polarization tests.The results showed that increas in heat input leads to a change in the distribution of alloying elements, formation of intermetallic phases around grain boundaries and the shifting balance between austenite and ferritein phases in weld region. Based on the cyclic polarization tests, cross-weld and base  metal active behavior and have good corrosion resistance due to the presence of high alloying elements. As well as increase in heat input leads  to  an increase in current density and decrease in the pitting potential.
R. Abdolvand, M. Atapour, M. Shamanian, A. Allafchian,
Volume 3, Issue 2 (1-2018)
Abstract

Transient liquid phase bonding of  UNS S32750 super duplex stainless steel to AISI 304 austenitic stainless steel using BNi-2 interlayer was carried out at 1050 oC for 45 min. Microstructure analyses of the joint were carried out using optical microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Microhardness indentation and shear strength test were performed to assess mechanical behavior of the joint. No eutectic contents was seen at the joint and thus Isothermal solidification was completed at 45 min bonding time. The shear strength of the joint was about 0.7 of duplex stainless steel shear strength. Froctographic studies revealed that the fracture mode was completely ductile in the case of the joint made at bonding time of 45 min.
A. Parvaresh, H. Sabet, M. Roohnia,
Volume 3, Issue 2 (1-2018)
Abstract

In this research, the effect of different welding parameters on residual stress and microstructure of the weld region, as well as the comparison of two methods of measuring residual stress using critical fracture longitudinal wave method and preformation method have been investigated. For this purpose, the taguchi DOE methodology is used as a statistical method to optimize four parameters of pulse current, base current, and pulse on time% and pulse frequency to minimize longitudinal residual stresses in austenite 304 AISI stainless steel. After welding, stress measurements were performed using two methods critical fracture longitudinal and perforation, and hardness, tensile and OM tests were performed on the specimens. The tests results show that at all levels of the pulse parameters arranged with the standard L9 Taguchi array, the incident heat input is irrefutable and the effect of this parameter is move then 50%. The optimum conditions obtained while the highest frequency level should be considered. The general trend is achieved from the residual stress measurement charts is consistent with the logic of stress distribution in both methods. Sample number 1 with stress equivalent to 232 MPa and sample number 9 with stress of MPa 126 in ultrasonic method with frequency 4 MHz have the highest and lowest stress among different samples, respectively. The size of the coaxial grains weld was directly related to the incoming heat, so that the least amount of coaxial grains in the welding center was related to specimens NO. 3 and 9 with grain size of 8 µm and 9 µm, which in these samples had the lowest amount of welding heat is measured. The samples 1 and 4 with HV 128 and HV 144 hardness and MPa 633 and MPa 639 have the least hardness and tensile strength and the highest strength and hardness of sampled 3 and 9 with 166 and 161 hardness and tensile strength MPa 703 and MPa 695.
 
Morteza Abbasi, Hamidreza Najafi, Alireza Khodabandeh,
Volume 4, Issue 1 (8-2018)
Abstract

Dissimilar welding of AISI 304L austenitic stainless steel to AISI 409 ferritic stainless steel with GMAW process usingtwo Ar-O2 and Ar-CO2 shielding gas mixtures was studied. ER316LSi and ER309LMo filler metals were chosen by considering 5 and 15% delta ferrite according to the Schaeffler equations and diagram. Based on the observations, both filler metals accompanied by Ar-2%O2 shielding gas resulted in acceptable weldments. Yield strength and UTS of tensile samples were 288 and 424 MPa, respectively. All tensile samples fractured in the ferritic base metal. Microhardness test results demonstrated that the maximum hardness of 190-200 HV was obtained from ER316LSi weld metal. The minimum hardness of 145 HV was found in the HAZ of 409 side mainly due to the grain coarsening. Microstructural examinations revealed needle-like precipitates formed perpendicular to each other in the HAZ of 409 stainless steel. It seemed that the pre-existing TiC precipitates evolved into the needle shape precipitates as a result of rapid heating and cooling rates during the welding process.
 


Majid Tavoosi, Sajad Arjmand, Saied Solgi,
Volume 4, Issue 1 (8-2018)
Abstract

The influence of heat-input and pre-heat treatment on the structure, mechanical and corrosion behaviors of 2205 duplex stainless steel joint by means of GMAW process was the goal of this study. In this regards, the welding process was done using different heat input in the range of 0.6 to 1.4 kJ/mm and different pre-heating treatments in the range of 25 to 100 oC. The microstructural properties of prepared samples were evaluated using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Based on archived results, the microstructure of as-welded samples were combinations of Widmaneshtaten austenite which nucleated from boundaries and growth toward central part of ferrite grains. By increasing the heat-input, the percentages of ferrite and austenite phases decreased and increased, respectively. In this condition, the highest value of strength and ductility was achieved in as-weld samples with medium (1.0 kJ/mm) heat-input. The corrosion studies showed that the heat-input has negligible effects on corrosion behaviors of 2205 duplex stainless steel joint. It was also found that the pre-heating treatment has adverse effect on the mechanical properties of the junction.    


, M. Ahl Sarmadi, M. Atapour, A. Behjat, H. Edriss, M. Vahman ,
Volume 4, Issue 1 (8-2018)
Abstract

Galvanic corrosion is an ever-present problem in all different environments, particularly in tanks. The goal of this project is to develop a finite element model that can be used with experimental data to characterize the corrosion of a galvanic weldments couple in an electrolyte. In this study sample are welded by gas tungsten arc welding and friction stir welding. According to ASTM G8, Evaluation of corrosion properties examined with cyclic polarization test in 0.5 molar H2SO4 andthe information required to validate the model was prepared. The finite element model is developed using COMSOL and Math Module through derivation of equations describing corrosion thermodynamics and electrochemical kinetics. The results showed that reducing in heat input to improve galvanic corrosion behavior in the weld sample.In addition to result of simulation reveal sample that welded by gas tungsten arc method had higher current density galvanic corrosion in comparison with friction stir sample.
H. Mostaan, M. Safari, A. Sonboli, M. Haddadi, A. Taherkhani,
Volume 4, Issue 1 (8-2018)
Abstract

In this paper, numerical and empirical investigations of the effect of AISI 347 stainless steel interlayer on the microstructure, mechanical properties and fracture mode of AISI 321 stainless steel resistance spot welds have been conducted. For this purpose, two types of joints, the first free from inter layer and the second contains interlayer with 0.05 mm thickness as well as difference currents and times,were evaluated. In order to examine the mechanical properties including maximum force and tensile mode, tensile – shear test of the spot welds was done. The obtained results indicated that an increase in the welding time and current resulted in a change in fracture mode from interfacial to peripheral owing to an increase in fusion zone volume. The change in the chemical composition because of the presence of interlayer and an increase in cooling rate caused the formation of different phases as well as observation of the dispersed Martensite phase in fusion zone.
 
M. Gholami, H. Mostaan, A. Sonboli, ,
Volume 4, Issue 2 (1-2019)
Abstract

In this research, gas tungsten arc welding of dissimilar joint between 4130 low alloy steel and AISI 201 austenitic stainless steel was investigated. Four filler metals i. e. ERNiCr-3, ER 309L, ER 308L and ER 80SB2 were used. After welding, microstructural features of various areas and also fracture surfaces were examined using optical microscopy and scanning electron microscopy. Tensile test was conducted in order to study the mechanical properties of each joint. It was found that ERNiCr-3 is fractured from fusion zone and the others were fractured from 4130 base metal. Also, some second phase particles such as NbC were seen in the ERNiCr-3 weld joint. SEM observation showed that the fracture behavior of ERNiCr-3 weld joint is semi brittle and the others are ductile. The fusion zone of ERNiCr-3 weld joint was fully austenitic and consisted of equiaxed grains and no crack was seen in this area. The fusion zone of ER 308L and ER 309L were composed from cellular dendrite and finally ER 80S-B2 weld joint was consisted of lath martensite.
M. Ostovar, T. Saeid, A. Mostafapour, S. Emami,
Volume 4, Issue 2 (1-2019)
Abstract

In the TIG-MIG hybrid welding, higher weld efficiency and better weld quality are obtained with respect to each individual TIG and MIG welding methods. Moreover, in this method, the MIG arc is more stable in pure argon shielding gas. Therefore, in this study, the influence of TIG-MIG hybrid welding parameters on the welds appearance quality and welds depth to width ratio of a 316L austenitic stainless steel was investigated using optimum parameters of Taguchi design of experiments (DOE). Microstructure of the heat affected zone (HAZ) obtained from the hybrid welding was compared with those of each individual MIG and TIG welding techniques under equal heat-input condition. The results indicated that the most important parameter in the hybrid method to obtain the best appearance quality and the highest depth to width ratio is the distance between the two arcs. The MIG and TIG currents are the next influencing parameters. The width of HAZ and the size of constituent grains in hybrid welding with optimum parameter, were smaller than those of each individual TIG and MIG processes due to the higher associated cooling rate in the hybrid welding technique.
S. Ghaderi, F. Karimzadeh, A. Ashrafi,
Volume 5, Issue 2 (1-2020)
Abstract

In the present study, the effect of time and base metal microstructure on the Transient Liquid Phase (TLP) bonding of 304L stainless steel was studied. TLP was performed at 1050 0C for 5 and 60 minutes on the coarse grain austenitic and martensitic microstructure using BNi-2 interlayer. To prepare martensitic microstructure, as-received 304L was rolled at -15 0C up to 80% rolling reduction. TEM analysis was proved that the microstructure of 80% rolled samples consisted of two different morphologies of martensite namely as lath-type and dislocation cell type martensite.  It was observed that the structure of bonded zone after 5 min has consisted of isothermally solidified zone (ISZ) containing γ solid solution and athermally solidified zone (ASZ) containing complex boride phases. Meanwhile, after 60 min of  heating, the structure of bonded zone completely solidifies isothermally. The obtained results also showed that the martensitic microstructure considerably effect on the width of diffusion affected zone (DAZ) which was related to the reversion of martensite to ultrafine grain austenite during heating.
N. Rahimi, T. Saed,
Volume 5, Issue 2 (1-2020)
Abstract

In this study the effect of activating fluxes on the penetration depth, microstructure and microhardness of AISI316L austenitic stainless steel were evaluated by three TIG process variations (TIG, A-TIG and FB-TIG) and the results were compared together.. After selecting the optimal flux in the second stage, the effect of that on the penetration depth, microstructure and weld microhardness of  welded 316L austenitic stainless steel by A–TIG and FB-TIG methods, were evaluated and  the results were compared by the sample which was welded by TIG process. At this stage, it was found that the depth and width to depth ratio in FB-TIG method is slightly greater than the other two methods. Also in FB-TIG method, eqiaxed dendritic zone in the center line of weld is slightly greater than in A-TIG method. Study of microhardness of weld in three methods shows that in A-TIG and FB-TIG methods hardness of center line is more than TIG method.


S. Emami, T. Saeid,
Volume 5, Issue 2 (1-2020)
Abstract

Friction stir welding (FSW) was conducted on AISI 304 austenitic stainless steel plate with 2 mm thickness. The FSW was performed at a welding and rotational speeds of 50 mm/min and 400 rpm, respectively. Microstructure observations by the optical microscopy showed that a severe grain refinement occurred in the stir zone (SZ). Electron backscattered diffraction analysis (EBSD) results indicated that high fraction of low angle grain boundaries (LAGBs) developed in the thermo-mechanically affected zone (TMAZ) through the occurrence of the dynamic recovery. Moreover, in the path from the TMAZ towards the SZ, the fraction of high angle grain boundaries (HAGBs) increased with decreasing the fraction of LAGBs through the occurrence of continuous dynamic recrystallization (CDRX). 100 Pole figure showed the formation of shear texture components of A*1 and A*2 in the SZ which implied the occurrence of CDRX mechanism.
 
M. Emadi, H. Mostaan, M. Rafiei,
Volume 5, Issue 2 (1-2020)
Abstract

Dissimilar weld joints between stainless steels and nickel based super alloys are extensively used in petrochemical, gas and oil applications. These joints jave great challenges from metallurgical transformations point of view. In this research, microstructural evolutions and corrosion behavior of laser weld joint between Inconel 625 and AISI 430 ferritic stainless steel were investigated. Ferritic stainless steels are less expensive and have magnetic properties in comparison with austenitic stainless steels. Scanning electron microscope and optical microscope were used in order to study the microstructures of weld metal and heat affected zone. It was found that fine dendritic microstructuresare formed in the weld metal which  isgrown in a competition manner. An epitaxial growth was observed in the interface between AISI base metal and weld metal. No considerable grain growth was observed in the heat affected zone on Inconel 625. Corrosion resistance of weld joint was investigated in 3.5 % wtNaCl solution using potantiodynamic polarization test. It was concluded that corrosion resistance is increased from AISI 430 base metal toward Inconel 625 base metal.
 
S. Asadi, T. Saeid, A. Valanezhad, J. Khalil Allafi,
Volume 5, Issue 2 (1-2020)
Abstract

In this research, dissimilar welding of NiTi shape memory alloy to AISI 304 austenitic stainless steel Archwires was investigated. For this purpose, common straight orthodontic archwire with rectangular cross-section and dimensions of (0.635 × 0.432 mm) were selected and the laser welding technique was used to connect the wires. The microstructure, chemical composition and phasesin the weld zone of the joints werestudied with Optical microscopy (OM), Scanning electron microscopy (SEM) equipped with EDS analysis system, focused X-ray diffraction (Micro-XRD).Also, the mechanical properties of the weld zone were investigated by using Vickers microhardness test. Microstructure investigation showed that the obtained microstructure from the laser weld of these alloys has a dendritic and non-homogeneous structure. According to XRD analysis, brittle intermetallic compounds such as Fe2Ti, Cr2Ti, TiNi3, and Ti2Ni wereformed during laser welding in the weld zone. Formation of these brittle intermetallics caused increasing the hardness of the weld zoneabout 800 HV. and decreasing the mechanical properties. Also, Fe2Ti intermetallic particles mainly formed in the weld region near the NiTi fusion zone which results in stress concentration, micro-cracks formation and dropping joints mechanical properties. Therefore, a suitable modification process is required to control the chemical composition of the weld zone and improving the joint properties of dissimilar laser welded archwires of these alloys.

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb