Search published articles


Showing 3 results for 316l Stainless Steel

R. Ghasemi, E. Heshmat Dehkordi, M. Shamanian,
Volume 2, Issue 1 (8-2016)
Abstract

In this study, microstructural features and mechanical properties of Incoloy 825-316L stainless steel dissimilar joints have been investigated. For this purpose, pulsed gas tungsten arc welding method was employed and 316L, Inconel 82 and Inconel 625 alloys were used as filler metal. First, specimens were cut. Pulsed gas tungsten arc welding was performed using peak and base currents of 220 A and 110 A, respectively. Microstructure of welded joints was studied using metallographic observations and energy dispersive spectroscopy (EDS) analysis. In order to evaluate the mechanical properties, tensile and microhardness measurements were done on the joints. In all specimens, dendritic and equiaxed and/or cellular growth of austenite phase was observed. Incoloy 625 weld metal had the finest dendritic structure. Tensile test results revealed the ductile fracture with a high percent of elongation for all specimens. The highest tensile strength and percent of elongation of 610 MPa and 48% were obtained for specimen welded using Inconel 625 filler metal. Inconel 625 and 316 stainless steel weld metals showed the highest and lowest microhardness with values of 232 HV and 224 HV, respectively.  


M. Naseri Alenjagh, T. Saeid,
Volume 9, Issue 1 (5-2023)
Abstract

The purpose of this research is to investigate the change of rotational speed and traverse speed on the microstructure and mechanical properties of the joint in friction stir welding of aluminum 1050 and 316L stainless steel. For this purpose, the microstructure, thickness of intermetallic compounds, hardness and tensile test on the joint were investigated. The proper selection of welding parameters leads to the creation of a joint with suitable metallurgical and mechanical properties. In this research, two rotational speeds of 560 and 900 rpm and four traverse speeds of 60, 80, 100 and 125 mm/min were performed. The microstructure consisted of four areas of the base metal, heat affected zone, thermo-mechanical affected zone and stir zone. In all the samples, the stir zone (SZ) contained a recrystallization microstructure with fine equiaxed grains. According to the Energy dispersive X-ray Spectroscopy results, an IMC layer formed in the joint interface. The hardness of the stir zone in all samples was higher than the aluminum base metal due to the formation of recrystallization fine equiaxed grains and the presence of steel particles. The best sample in terms of mechanical properties, mocrostructure and joint quality was obtained in the conditions of rotation speed of 900 rpm and advance speed of 125 mm/min. The strength was equal to 84 MPa with 77% efficiency.

M. N. Sadraee Far, F. Kolahan,
Volume 9, Issue 2 (1-2024)
Abstract

In this study, we employed the active TIG method with ultrasonic vibration (UV) for welding 316L steel. Throughout the active tungsten inert gas (A-TIG) welding process, a high-frequency ultrasonic generator produced high-intensity acoustic waves at an optimal frequency of 20.3 kHz and a vibration amplitude of 8 micrometers. These waves were directed into the molten weld pool, covered by SiO2 nanoparticles serving as an activating flux. The effect of UV and nanoparticles on weld geometry and weld microstructure was analyzed and compared with conventional TIG welding proces. The results indicated that the use of nanopowder not only increased weld penetration by approximately 17.5% but also reduced the Weld Bead Width (WBW) by 28% compared to Conventional TIG. These values increased by 25% and decreased by 35%, respectively, in the presence of ultrasonic waves. Additionally, the introduction of nanomaterials into the molten pool led to finer grains. The ultrasonic waves played a crucial role in ensuring the uniform distribution of these nanomaterials in the melt, ultimately resulting in an enhanced microstructure of the weld.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb