R. Tamasgavabari, A. Ebrahimi, S. M. Abbasi, A. Yazdipour ,
Volume 5, Issue 1 (9-2019)
Abstract
In this research, the effect of vibration at the resonant range (75 Hz) on the hardness and tensile strength of AA-5083-H321 aluminum alloy, were welded by gas metal arc welding (GMAW) investigated. Vibration forces were ranged from 850 N to 2200 N, under identical welding parameters. Tensile strength and hardness testing of welded samples were performed. After mechanical tests, the fracture surfaces of welds were examined using scanning electron microscope (SEM) and discussed. The results showed that with increasing vibration force, the tensile strength and fracture strength of the specimens were welded during vibration, were increased by about 3 and 9 percent, respectively, compared to the non-vibrated weld sample. However, no significant change was observed in the hardness of the welded specimens. Mean grains size and heat affected zone of the sample was welded was welded with conventional GMAW, were about 200 μm and 1800 μm, but due to inducing vibration, as vibration force increased from 850 N to N 2200 N, Mean grains size was reduced to about 75 μm and HAZ was reduced from about 1000 μm to 700 μm, that is, about 44 to 61%.
M.r Borhani, S.r. Shoja-Razavi, F. Kermani,
Volume 10, Issue 1 (6-2024)
Abstract
In this study, the effects of friction stir welding (FSW) parameters on the properties of dissimilar joints formed between 5083 aluminum alloys and 316L austenitic stainless steel, with a thickness of 4 mm, are investigated. The tool speed is varied in the range of 16 to 25 mm/min, while the tool rotation speed is maintained at a constant value of 250 rpm. To examine the microstructure of different weld regions, both optical and scanning electron microscopes are employed. To assess the mechanical properties, hardness and tensile tests are conducted. The results shows the formation of a composite region characterized by steel reinforcement particles dispersed within an aluminum matrix. At the steel-aluminum interface, a single layer of discontinuous intermetallic composition with a thickness of approximately 2 micrometers is observed. Notably, when the rotation speed is set to 250 rpm and the tool speed is 16 mm/min, a tensile strength of 298 MPa and ductility of 26% (93% of the tensile strength and 50% of the ductility of the 5083 aluminum alloy) are achieved.