Search published articles


Showing 2 results for Aisi316

I. Rasouli, M. Rafiei,
Volume 4, Issue 2 (1-2019)
Abstract

In this research, microstructure and mechanical properties of AISI316 to AISI430 dissimilar joint were investigated. For this purpose, GTAW process using ER316L and ER2209 filler metals with diameter of 2.4 mm was used. The microstructure and fracture surface of the welded samples were characterized by optical microscopy and scanning electron microscopy. Also the mechanical properties of the welded samples were evaluated by tension, impact and microhardness tests. It was found that the microstructure of the welded sample with ER316L filler metal contained Widmanstatten austenite with inter-dendritic and lathy ferrites. Also, in the welded sample with ER2209 filler metal, Austenite phase in ferrite matrix was seen. In tension test, all samples were fractured from AISI430 side of the joint in a ductile manner. ER2209 weld metal indicated low impact energy of about 27 J, while ER316L weld metal indicated higher impact energy of about 43 J. The fracture surface in both welded samples indicated brittle fracture mode. The microhardness of the weld metal of the welded sample with ER316L filler metal was higher than the welded sample with ER2209 filler metal due to the presence of alloying elements, proper distribution of delta ferrite and finer microstructure.
M. M. Taghvaei, M. Shamanian, Behzad Niroumand, H. Mostaan,
Volume 8, Issue 2 (1-2023)
Abstract

Joining of Hastelloy C276 nickel-base superalloy to AISI316 Stainless Steel using BNi-2 interlayer performed by transient liquid phase process (TLP) at 1150°C for 5 and 30 minutes. Bonding microstructure was studied using an Optical microscope and a scanning electron microscope (SEM). Vickers hardness test and shear strength test have been used to evaluate the mechanical properties. Microstructural studies showed that at 5 and 30 minutes of bonding time, isothermal solidification is completely formed, and the Center of the joint is free of any eutectic intermetallic compounds. Also, Findings showed that the DAZ of Hastelloy C276 nickel-base superalloy contains rich borides of Ni, Cr, Mo, and W, and the DAZ of 316 austenitic stainless steel contains borides rich in Fe, Cr, and Ni.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb