Search published articles


Showing 2 results for Al Alloy

A. Rabiezadeh, A. Afsari,
Volume 4, Issue 2 (1-2019)
Abstract

The purpose of this study was to examine the effect of adding Nano particles such as Nano Carbon Tube during Friction Stir Welding (FSW) on dissimilar Al alloy joints. More specifically, both FSW and Friction Stir Processing (FSP) were performed simultaneously to investigate the effect of adding Nano particles on mechanical properties and microstructure of the weld zone for joining AA5754-H22 and AA6063-T4aluminum alloys. Reliability of the joints was tested by non-destructive tests such as visual inspection, ultrasonic, and radiography. The global mechanical behaviors of dissimilar welds were similar to that of the base material. Important losses in ductility were also reported for dissimilar welds. Microstructural evaluation of fractured surfaces indicated that ductile fracture was the major mechanism of similar and dissimilar welds. We expected that the locks for dislocation moving would improve the mechanical properties of the weld zone. Also, the friction coefficient in the two-passes welded sample was about 30% lower than the friction coefficient of the base metal. On the bases of the wear resistance of hardness and the coefficient of friction, it was concluded that the wear resistance of the surface Nano-composite produced had also increased in the stir zone.
M.r. Samadi, H. Mostaan, M. Rafiei , M. Salehi,
Volume 6, Issue 1 (8-2020)
Abstract

Nowadays, aluminum and its alloys have extensive applications in marine and aerospace industrious owing to their excellent properties. Among these alloys, 5xxx series of aluminum alloys have also excellent corrosion resistance, high toughness and strength and also good weldability. Decrease in yield strength and also tensile strength due to the grain growth in the heat affected zone is of the main problems in the welding of these series of Al alloys. In this research work, gas tungsten arc weld joints in two modes i. e. direct current and pulsed current were compared in order to study the effect of this parameter on the microstructure, mechanical properties and corrosion resistance of weld joints. Also, the effect pulsed current parameters such as peak current and basic current were investigated. Microstructural evolutions and fracture surfaces of weld joints were examined by optical microscope and scanning electron microscope, respectively. It was found that the fracture behavior of all joints is in a ductile manner. Also, tensile test and electrochemical polarization were conducted in order to study the mechanical properties and corrosion behavior of weld joints.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb