Search published articles


Showing 31 results for Aluminum

M. Sadeghi Gogheri, M. Shabani, E. Mirzapour, M. Kasiri, K. Amini,
Volume 2, Issue 1 (8-2016)
Abstract

In this study, commercially pure titanium and aluminum alloy 5083 in connection rotational speed of 1120 rpm and a feed rate of 50 mm per minute for butt welding by friction stir welding has been successfully completed. Micro-structure, hardness and tensile test was conducted on the connection. Welding area is a composite of aluminum and titanium particles that the particles plays an important role in increasing hardness and tensile strength. Welding area is also has three areas. Vickers hardness is 480 times the area of welding means that the hardness in the area of the base metal of titanium and aluminum increased by 16% and 60% for titanium aluminum intermetallic compounds is created in the area is weld.


Y. Najafi , F. Malekghaini, Y. Palizdar, S. Gholami,
Volume 2, Issue 1 (8-2016)
Abstract

Recent research suggests that extraordinary combinations of strength and ductility can be achieved in the so-called TRIP steels. With the development of these steels, welding with small weld nugget size and acceptable strength are needed. For these reasons present study was carried out to investigate the effect of heat input onweld size, microstructure and the hardness of the welded metal of 0.4%C- 4%Al δ-TRIP steel after continues fiber-laser welding process. To achieve this goal a bead on plate welding with three different values of heat input 28, 60 and 80 J/mm were used.The results of welding process revealed that by increasing the heat input, cooling rate decreased and the volume percent of the δ-ferrite in weld metal increased due to the availability of sufficient time for partitioning of Al in high heat input which leads to the stable δ-ferrite and as a result the difference between the hardness of the weld metal in comparison to the base metal decreased.


S. Ansari, E. Ranjbarnodeh, M. Iranmanesh,
Volume 2, Issue 2 (11-2016)
Abstract

Studies on welding process of Aluminium weldments shows that post-weld residual stress and deformation are influential on structure efficiency and there are different variable which affect these stresses and deformation. In this study the effect of geometrical variables and welding sequence on residual stresses and deformation in Aluminium H321 have investigated by the finite element software Ansys. Thermo elastic-plastic model was verified by metallography experiment and measurement of post-weld deformation afterward, weld leg, penetration depth and welding sequence were optimized to minimize the distortion. It was concluded that weld-volume increase post-weld distortion and it can be minimize by choosing an appropriate weld sequence


H. Rezaei Ashtiani, M. Shafiee,
Volume 4, Issue 1 (8-2018)
Abstract

Friction stir spot welding (FSSW) is a type of solid state welding that is used in the connection of small pieces and light metals such as aluminum alloy especially. The technical problem during melting of aluminum alloys is one of the most important reasons for developing application of friction stir welding for aluminum alloys. In this research, the effects of important processing parameters such as tool rotation speed, dwell time, plunge depth of tool and sheets thickness on the mechanical properties such as failure force and energy of FSS welded AA-3105 alloy have been experimentally studied using micro hardness and tensile tests. Tensile-shear tests show four different fracture modes of weld failure which consist of shear fracture, circumferential fracture, nugget pull out fracture and fracture in base material modes. The results show that the weld strength drops with increasing the tool rotation speed. Strength and hardness of weld and weld zone increase and then decrease with increasing dwell time of rotational tool which it can be obtained an optimum value of dwell time. Strength and fracture energy and load of welds increases with increasing the sheet thickness
B. Sadeghi, M. Shamanian, F. Ashrafizadeh, P. Cavaliere,
Volume 4, Issue 2 (1-2019)
Abstract

Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of the tool. The achieved finding revelled that the FSW of the nanocomposites produced by P/M containing bimodal sized Al2O3 reinforcement have a working window are affected by the heat input. The joint evolution revelled that the microstructure and mechanical properties of those was related to the generated heat input during the welding. It is known that dynamic recrystallization (DRX) caused grain size refinement of aluminium into stir zone. Meanwhile, it was revealed that the pinning effect of Al2O3 nanoparticles retarded grain growth of the recrystallized grains caused by dynamic recrystallization (DRX)
I. Khodai Delouei, H. Sabet , V. Abouei Mehrizi,
Volume 4, Issue 2 (1-2019)
Abstract

Friction  Stir Welding  is one of the solid-state processes and today it has been used to join different types of materials. Friction stir welding does not have many problems and limitations due to melting and solidification of weld metal and by controlling its variables, the microstructure and desired mechanical properties can be achieved at the joint. Recently, in most industrial areas, due to its lightness and energy saving, much attention has been paid to the joining of aluminum alloys. The present study investigates the microstructure and evaluation of mechanical properties of friction stir welding in AA2024 and AA6061butt welds. A cylindrical threaded tool was used to join 5 mm thick plates at rotational speeds of 800, 1000 and 1200 rpm and traverse speeds of 30, 50, 70, 90 and 110 mm / min. In order to perform the necessary investigations, metallurgical observations were performed by optical microscope and scanning electron microscope equipped with a chemical analysis system of the elements, as well as mechanical tests of tensile strength and micro hardness. The results showed that the difference between the two alloys causes hardness variations in the nugget zone and a large hardness drop at the transition between the zone composed of both alloys and the 6061 zone. By increasing the traverse speed from 30 to 110 mm / min at constant rotational speeds of 800, 1000 and 1200 rpm, due to reduced input heat, the grain size decreases and the hardness and strength increase. Also, the highest tensile strengths and hardness were 221.6 Mpa and 111.05 Vickers, respectively, for a sample welded at a rotational speed of 1000 rpm and a traverse speed of 110 mm / min.
A. Abdollahzadeh, A. Shokuhfar,
Volume 5, Issue 1 (9-2019)
Abstract

In this study, friction stir butt welding of Mg and Al alloys with applying Zn interlayer was performed. To obtain optimum condition, a combination of two travel and three rotation speeds were selected. Mg-Zn and Mg-Al-Zn IMCs, Al solid solution and residual Zn, were the most common phases in the stirred zone, which eliminated the formation of Al-Mg intermetallics. The maximum mechanical properties were achieved for the joint fabricated at 35 mm/min and 600 rpm, caused to 24% improvement in tensile strength and around 3 times enhancement of elongation compared with Zn free sample FSWed at the same conditions. The fracture micrographs were consistent with corresponding ductility results. Fracture surfaces of Zn-added samples presented a fine texture with a mixture of brittle and ductile fracture feature, which was different from the coarse cleavage plane and fully brittle fracture of the joint without Zn interlayer. 
A. Izadpanahi, M. Mahdavi Shahri, M.s. Abravi,
Volume 5, Issue 1 (9-2019)
Abstract

This paper introduces a novel soldering method for joining aluminum foams to aluminum plates. In this method, a rotating aluminum plate is soldered to the aluminum foam using zinc-based solder material. Rotation of the aluminum plate over the solder material drags the solder material and stirring it. Excellent tensile strength was obtained compared to those samples that are welded with the soldering flux but with no rotation involved. It was concluded that the stirring of the zinc-based solder material in the liquid state and just before the solidification break the oxide layers and help the wetting process done. Scanning electron microscope examinations showed diffusion has occurred between the solder alloy both the aluminum foam and the aluminum plate.
R. Narimani, M. Eliasi, M. Hosseinzadeh, H. Aghajani Derazkola,
Volume 5, Issue 1 (9-2019)
Abstract

Dissimilar joint with good quality and mechanical properties is one of the major problems the industries. One of the most commonly used methods to solve this problem is friction stir welding process. In this paper two different tool pin with simple cylindrical and screwed profile were used to finding optimization of friction stir welding parameters to reach best mixing flow, composite structure and maximum tensile strength in dissimilar joint between AA6065 aluminum alloy and pure copper. In this research 1130 rpm tool rotation, 24, 40 and 65 mm/min travelling speed, 0.3 mm plunge depth and 3o tool tilt angle were carried out. The results shows that internal material flow that produced with screw pin was better than simple cylindrical in constant process parameters. According to the results, at lower tool travelling speed the strength of joint increases. The tensile test results revealed the maximum strength of joint of screw pin was 345MPa with 2.6mm elongation and simple cylindrical pin was 272MPa with 2.2mm elongation which welded with 1130 rpm and 24 mm/min travelling speed.
R. Tamasgavabari, A. Ebrahimi, S. M. Abbasi, A. Yazdipour ,
Volume 5, Issue 1 (9-2019)
Abstract

In this research, the effect of vibration at the resonant range (75 Hz) on the hardness and tensile strength of AA-5083-H321 aluminum alloy, were welded by gas metal arc welding (GMAW) investigated. Vibration forces were ranged from 850 N to 2200 N, under identical welding parameters. Tensile strength and hardness testing of welded samples were performed. After mechanical tests, the fracture surfaces of welds were examined using scanning electron microscope (SEM) and discussed. The results showed that with increasing vibration force, the tensile strength and fracture strength of the specimens were welded during vibration, were increased by about 3 and 9 percent, respectively, compared to the non-vibrated weld sample. However, no significant change was observed in the hardness of the welded specimens. Mean grains size and heat affected zone of the sample was welded was welded with conventional GMAW, were about 200 μm and 1800 μm, but due to inducing vibration, as vibration force increased from 850 N to N 2200 N, Mean grains size was reduced to about 75 μm and HAZ was reduced from about 1000 μm to 700 μm, that is, about 44 to 61%.
N. Marchin, A.r. Soltanipoor, K. Farmanesh,
Volume 5, Issue 2 (1-2020)
Abstract

In this study, the effect of tool's advance velocity on the mechanical behavior of the Al-7075 alloy during friction stir welding was simulated. In this simulation, the Lagrangian method with rigid-Visco-plastic material was used. The results of the process temperature obtained by the simulation method were verified by the experimental welding test. Using the characteristic stress, strain and temperature relationships in the Al-7075 alloy, the changes and the relationship between the material strength during the welding process by simulation was studied. The generated simulation defects was verified by experimental test.
M. Belbasi, M. Rezae,
Volume 5, Issue 2 (1-2020)
Abstract


Today in addition to Join by friction stir welding, the composite fabrication process is also performed simultaneously. The main purpose of the present research is to investigate the effect of pin geometry on the property of Aluminum 6061- alumina nanocomposite created by friction stir welding. For this purpose friction stir welding was carried out by selecting five types of pin geometries on Aluminum 6061 in which Al2O3 particles were deposited and the samples were examined by tensile and hardness tests, optical and electron microscope. Samples were investigated by tensile and hardness test, optical and electronic microscopy. Regular hexagonal pins due to having six smooth face and impulsive movement during rotation, caused a good perturbation which resulted in maximum tensile strength and elongation percentage of 198 MPa and 10.25 and minimum grain size of 13.3 micron, respectively. In the sample welded by a threaded cylindrical pin due to non-impact during rotation, inappropriate flow of reinforcing particles and its accumulation at perturbation the lowest tensile strength and elongation percentage of 133.5 MPa and 1.95%, respectively, were observed.
Ramin Delir Nazarlou, Dr Faraz Omidbakhsh, Dr Javad Mollaei Milani,
Volume 6, Issue 1 (8-2020)
Abstract

Friction stir welding (FSW) is an economic and high quality technique at aluminum welding and joining methods. The most important factor in the soundness of this type of welding, is the mechanism of material transfer in each tool rotation. The materials transfer during the welding process involves horizontal and vertical movement that caused by extrusion process and forging force (the tilt angle due to forging force and on the other hand, shape of pin due to the extrusion process). One of the most important parameters in FSW process is the effect of rotational speed in the welded zone. In this study, the effect of rotational speed at constant welding speed, in the butt joint of pure commercial aluminum, was investigated. The results of the study showed that, increasing the rotational speed due to increases the amount of material transfer in the weld zone. The welded zone was investigated by appearance weld zone experiments and using radiography tests. Also weld zone was investigated in macro and microstructure by using cross section. Then the micro hardness testing has been used by cross section at welded zone. In order to investigate the mechanism of materials transfer during the process, the electrical resistivity test has been used to analyses the amount of materials transfer in the weld zone. Results shows that, increasing rotational speed due to increasing the amount of materials transfer in the weld zone and decreasing the amount of defects in the weld zone.
 
S. A. A. Hashemi Milani, R. Tavangar, M. Azadbeh, Kahinpoor, H. Sadeghi-Nasab,
Volume 6, Issue 1 (8-2020)
Abstract

During the brazing of aluminum-based heat exchangers, the flux dry-off temperature plays a crucial role to get sound joints with maximum strength. In the present study, the NOCOLOK® flux consists of two phases of K2AlF5.H2O and KAlF4 with a melting point around 580 °C was used for brazing AA3003 as base metal with a clad-coating of AA4343 as filler metal. The slurry was applied on the joints and they dried at 220, 300 and 380 °C in air. The tensile shear test revealed that when the slurry dried at 300 °C, the joint withstand maximum shear stress of 44 MPa without defective features. At 220 °C and 380 °C, joint shear stresses were 34 MPa, 30 MPa respectively. However, drying at 380 °C under protective nitrogen gas enhanced the shear strength of up to 39 MPa. Having applied a change in current dryer temperature in the factory from 360 °C to 300 °C reduced the percentage of heat exchangers leakage from 3.2% to 0.6%, approximately, on a weekly basis.
H. Ebrahimzadeh, H. Farhangi,
Volume 6, Issue 2 (12-2020)
Abstract

The non-continuous laser beam in pulsed lasers allows the mechanical peening between two consecutive beams on a still hot weld bead. At a very short time (20, 150 and 300 ms) after laser pulse application, mechanical peening was performed on the welding bead. To achieve these short times, the light sensor detects the nth laser pulse and the mechanical arm starts moving. Upon reaching the tip of the pin near the workpiece, the n + 1th pulse was irradiated to the workpiece surface, and so the pin impact to the weld bead after traveling a short distance. Desirable mechanical properties were obtained at the highest time (300 ms) and highest pressure (6 bars). In this time and pressure the weld beads were not broken due to bending forces of peening.
Y. Ghorbani Amir, A. Zolriasatein, H. Torabian,
Volume 6, Issue 2 (12-2020)
Abstract

The aim of this study is to investigate the effect of rotary frictional welding process variables on microstructure, mechanical and physical properties of copper-aluminum dual-tube pipes. For this purpose, using a thermosetting friction welding machine, a copper pipe (99.44% purity) with a similar diameter aluminum tube (1050), was welded in three different conditions with different friction pressures and forging, and then by metallographic, hardening and microstructural testing it placed. The results of this study showed that with increasing friction pressure from 10 and 15 Bar respectively, in the interconnected phase, fuzzy interclass metal samples were created and caused a great loss in the deformation percentage and tensile strength of the interconnected sample. Also, with the reduction of frictional pressure and the removal of forging pressures down to 5 Bar, there is no proper bond between the two samples and formed in the interface between porosity and cracking. The most suitable result for the microstructure, mechanical and physical properties of the samples is in tubes with an outside diameter of 15 mm and an inner diameter of 10 mm, for samples having a friction pressure of about 10 Bar and a forge pressure of 15 Bar. The presence of intermetallic Al-Cu phases such as CuAl2, due to higher electrical resistance and ceramic nature, increases the electrical resistance of the joint and, on the other hand, the presence of cracks and pores has reduced the flow rate and eventually increased electrical resistance of the samples
M. Safari, H. Deilami Azodi ,
Volume 6, Issue 2 (12-2020)
Abstract

In this paper, the experimental investigation of formability of friction stir welded ultra-thin sheets of IF steel is investigated experimentally. First, the sheets are joined by friction stir welding process based on the tests determined according to the Taguchi design of experiments. The investigated parameters in the welding process are as tool rotational and traverse speeds. Then, the tailor welded blanks are formed based on dome height test up to the defect stage and the dome height is measured for each test. Therefore, the effects of friction stir welding process parameters on formability of friction stir welded ultra-thin sheets of IF steel are evaluated. The results show that by increasing the rotational speed, the dome height in forming process decreases, while with increasing the traverse speed, the formability of tailor welded blanks by friction stir welding process improves.  Also, the results of optimization based on signal to noise ratio method show that the tool rotational speed has the greatest effect on the dome height of tailor welded blank. 
 
R. Karimpoor, A. Farzadi, A. Ebrahimi ,
Volume 7, Issue 1 (8-2021)
Abstract

In the present study, effect of current, welding speed and preheat temperature during FB-TIG welding of AA5083 aluminum alloy was studied. Using the Taguchi method, 9 different tests were designed to investigate the effect of welding parameters on the penetration depth. Consistent with predictions, increasing the current and preheat temperature, and reducing the welding speed led to an increase in penetration depth. The maximum penetration depth of 8.02 mm was achieved at the current of 220 A, welding speed of 120 mm/min, and the preheat temperature of 100 °C. Taguchi analysis showed that increasing the welding current and preheat temperature had a more significant effect than the welding speed. Microstructural analysis indicated that the weld metal is fine-grained, along with coarse-grain in the HAZ of all samples. Many pores were observed in the samples with high welding speed and high welding current in the fusion zone. The sample with the highest heat input had the highest penetration depth. This sample had the highest elongation, equal to 69% of the base metal. Moreover, microhardness test demonstrated that the hardness of this sample dropped sharply from 70 Vickers to 58 Vickers in the HAZ.

M. Alimadadi, M. Goodarzi, S.m.a. Boutorabi,
Volume 7, Issue 1 (8-2021)
Abstract

This present study aimed to create an Al6061-St52 dissimilar joint and investigate the effect of the transverse speed by the friction stir welding process. Welding aluminum to steel is rugged by fusion methods because of the formation of brittle intermetallic compounds (IMCs). Therefore, to designate optimal parameters, acceptable IMC thickness, and mechanical properties determined. This research carried out different three transverse speeds of 16, 40 and 85 mm/min (with a constant pin offset of 0.2 mm). Geometry of tool's pin radius and height is 4mm and 1.8mm, respectively. In the transverse speed parameter, the highest ultimate tensile strength (UTS) of 200 MPa was obtained at 85 mm/min. According to the Energy Dispersive X-ray Spectroscopy results, an IMC layer formed in the joint interface. The heat input rate was calculated to designate the optimal parameters. In tensile specimens, fracture mainly occurred in the joints and within the aluminum stir zone due to the combination of thick IMC layer and steel fragments, respectively. The micro-hardness measurement results showed that at (85 mm/min) the hardness values were HV 75 in the aluminum stir zone and HV 315 in the AS vicinity of the interface region. This hardness value is much higher than the base metals (Aluminum base metal is an average of HV 53 and an average steel base metal of HV 245).
 
Mr. N. Taheri Moghaddam, Dr. A. Rabiezadeh, Dr. A. Khosravifard, Dr. L. Ghalandari,
Volume 7, Issue 2 (1-2022)
Abstract

Conventional fusion welding of aluminum alloys results in coarse-grained structure, inevitable defects, and significant softening in the welding region. Friction stir welding with bobbin tool is a technique of friction stir welding method that has a great potential for developing applications of friction stir welding method in marine, aerospace, and automotive industries due to having an extra shoulder. Sheets of 5083 aluminum alloy with a thickness of 3 mm were welded using the bobbin tool friction stir welding method to assess the feasibility of similar joining. The effect of different process variables such as shoulder pinching gap, transverse speed and tool rotation speed was investigated. The results showed that a sound joint is achieved at a transverse speed of 13 mm / min and a tool rotation speed of 1350 rpm. The results of tensile test showed that the obtained joint efficiency is 94.5%, which is higher than the joint efficiency of fusion methods and comparable to the joint efficiency of conventional friction stir welding. Microscopic evaluation of the fracture surface of welded specimens showed that for similar joints, the dominant fracture mechanism is ductile fracture.

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb