Search published articles


Showing 7 results for Cladding

Hamid Gharaei, Mahdi Salehi, Mehran Nahvi, Behzad Sadeghian,
Volume 2, Issue 2 (11-2016)
Abstract

In this research, artificial neural network (ANN) and genetic algorithm (GA) were used in order to produce and develop the NiAl intermetallic coating with the best wear behavior and the most value of hardness. The effect of variations of current, voltage and gas flow on the hardness and wear resistance were optimized by ANN and GA. In the following, the optimum  values of current, voltage and gas flow were obtained 90(A), 10(v) and 9 (Lit/min), respectively. Then, the wear behavior in the environment temperature and high temperature for optimized NiAl compound was compared with two other experimental samples.


P. Shayanfar, H. Daneshmanesh, K. Janghorban,
Volume 6, Issue 1 (8-2020)
Abstract

In this study, the effect of overlapping percentage on microstructure and mechanical properties of a single-pass coating by Inconel 625 powder laser has been investigated for quench-tempered ASTM A592 steel. In order to have a structural analysis, the inter dendritic distance was evaluated. For this purpose, scanning electron microscopy (FESEM) and Digimizer software were adopted. In order to investigate mechanical properties, elastic modulus, toughness, and micro hardness were evaluated. For the evaluation of elastic modulus, Noop indentation method was used, and for toughness studies, Evans method was applied. After the investigation, it was found that in the overlapping of single-pass 50% coatings, the heat input value is lower than overlapping in single-pass 75% coatings. It also contains a finer structure with much higher mechanical properties. This is in such a way that the inter dendritic distance in single-pass 50% coatings is about 0.91 µm. The average diameter of the dendritic columns is about 0.32 µm, hardness value is about 10%, Knoop hardness is about 9 units, elastic modulus is about 37 GPa, and toughness is about 9 MPa m1/2 higher in comparison with the 75% overlapping case.
M.h. Zakeri, A.r. Nasresfahani, S.m. Barekat,
Volume 7, Issue 2 (1-2022)
Abstract

In this research, the microstructure of Inconel 625 cladded layer on ASTM A575 steel has been investigated. By examining different parameters, the optimal single-pass sample with the least amount of dilution, porosity and fusion and suitable wetting angle was determined. Then cladding process with the optimal parameter was performed. The microstructure of the cladding layer was evaluated from the base metal to the top. Due to different cooling rates, dendritic morphologies were observed at different distances. Also, the cladding layer was free of any cavities, porosity and cracks and its thickness was 0.9 mm (900 micrometers). The results of (XRD) and (EDS) analyzes indicate thatthe γphase is formed and there is a relatively uniform distribution of elements in the cladding layer. These results also indicate that no change in the chemical composition of the substrate surface was achieved near the interface.The hardness test results also show that the hardness starts from 450 VHN at the top surface and reaches to 135 VHN in the base metal with a gentle slope. This slope of hardness can be attributed to the cooling or heating rates of the substrate.
S. Kazemi, G. Khalaf, A. Afsari, M.j. Marzban,
Volume 8, Issue 2 (1-2023)
Abstract

Stainless steel cladding is the formation of an alloy by creating a thin layer of stainless steel on another metal. In this research, a layer of SA240-TP316 austenitic stainless steel was coated on SA516-GR60 steel. Experiments were conducted to compare the mechanical properties of SA240-TP316 and claded SA516-GR60 steel welds in order to investigate the possibility of replacing the SA240-TP316 steel alloy. Examining the results of the chemical analysis of SA240-TP316 alloy shows that the coating has a similar chemical composition to SA240 alloy and with increasing depth, the hardness of the weld metal and the percentage of chromium is higher and the percentage of molybdenum in the weld alloy is lower. Comparing the ultimate strength of SA516 alloy after cladding and welding with SA240 stainless base alloy shows the improvement of tensile strength. In the first case, the strength changes in the range of 470 to 503 MPa and in the second case in the range of 477 to 570 MPa. The highest hardness was obtained in the heat affected area. Bending test showed that bending without cracking up to 180 degree angle is a sign of weld metal remaining ductile. The results of the impact test also show the ability to absorb energy, especially around the voltage of 150 volts.

 

M.r. Borhani, S.r. Shoja Razavi, F. Kermani, M. Erfan Manesh, S.m. Barekat, H. Naderi Samani, M. Shahsavari,
Volume 8, Issue 2 (1-2023)
Abstract

The purpose of this research is to laser cladding of stellite6 and stainless steel 17-4PH powders on the substrate of stainless steel 17-4PH, and investigate its solidification microstructure. The results showed that the microstructure of the stellite6 cladding has a cobalt solid solution ground phase with an FCC structure and Cr7C3 and Cr23C6 carbides. Also, the values ​​of the primary dendrite distance and the distance of the secondary dendrite arm have decreased by moving away from the interface; The reason for this is related to the difference in the cooling rate in different parts of the coating. The microstructure of 17-4PH stainless steel coating includes martensitic, ferritic, and austenitic phases; Due to the same chemical composition of the substrate and the cladding, the weight percentage of elements such as iron, nickel, chromium, and copper did not change from the cladding to the interface. It indicates the uniformity of the chemical composition of the cladding and the substrate. The calculated microhardness for the cladding of stellite6, the substrate and the cladding of stainless steel 7-4PH is about 480, 350, and 350 respectively. The reason for the higher microhardness of the cladding is the presence of chromium carbides (Cr7C3 and Cr23C6) formed in the cobalt field and the cobalt solid solution field of the cladding.
 

N. Abbasian Vardin, T. Saeid, A. R. Akbari ,
Volume 9, Issue 1 (5-2023)
Abstract

In this study, gas-tungsten arc welding was used for the cladding of two high entropy alloys of AlCoCrFeNi (Al1) and Al0.7CoCrFeNi (Al0.7) onto plain carbon steel plates. The welding process was carried out at a welding current of 180 A and a welding speed of 1.4 mm/s. The microstructures, craking behavior, phase composition, and hardness of the clads were characterized using various methods, such as optical microscopy (OM), field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD) analysis, and microhardness measurements. The results indicated that the Al1 clad had a petal-like structure of the BCC and Cr-rich phases. Both intergranular and transgranular cracks were identified in the Al1 alloy, which were recognized to be solidification cracks. Thermal stress and brittleness of the BCC phase promote cracking of the Al1. On the other hand, in the Al0.7 alloy, in addition to the BCC phase, a new FCC phase was  formed with various Widmanstatten and dendritic morphologies in the clad microstructure and the Cr-rich phase was not observed. Furthermore, in this alloy with lower Al content, a crack-free clad was obtained. The crack prevention in the Al0.7 alloy was attributed to a combination of factors, including a decrease in the solidification range, formation of the FCC phase, and reduction in hardness.

Farzad Shahin, Ehsan Baharzadeh, Mahdi Rafiei, Hossein Mostaan,
Volume 9, Issue 2 (8-2024)
Abstract

In this study, formation of Fe3Al and (Fe,Cr)3Al intermetallic compounds and the effect of Cr on microstructural and mechanical properties of Fe-Al cladding system such as hardness and wear resistance, were evaluated. For this purpose, first, iron and aluminum powders were mixed without chromium powder and in the second stege with the addition of chromium powder in high energy planetary ball mill, and Fe3Al and (Fe,Cr)3Al intermetallic compounds were synthesized. The preplaced powders were cladded on the surface of CK45 steel using gas tungsten arc welding process. The microstructure, formed phases and properties of the cladded layers were studied by optical microscope, scanning electron microscope, X-Ray Diffraction, micro and macro hardness, energy dispersive X-ray spectroscopy (EDS) and pin on disk wear test at temperatures of 25, 250, and 500 ᵒC. It was found that the microstructure of Fe-Al binary cladding contained Fe3Al dendrites with non-epitaxial growth. This non-epitaxial growth resulted from the difference in the chemical composition of the coating and the substrate at the interface between the coating and the substrate, which caused the formation of new crystals at the interface. However, the microstructure of Fe-Al-Cr ternary cladding contained martensitic blades within (Fe,Cr)3Al matrix. The results of hardness tests revealed that the hardness of ternary cladding is twice as compared with the binary cladding (30 and 60 HRC for binary and ternary claddings, respectively). Also it was found that the presence of Cr element in Fe-Al cladding improved the wear resistance of deposited layers. The predominant wear mechanism of Fe3Al pin was adhesive, while for (Fe,Cr)3Al pin moreover adhesive wear, micro-plowing abrasive wear was also seen. The mass losses of both pins were maximum at ambient temperature and minimum at temperature of 500 oC.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb