M. Mohammadi Zahrani, M. Shamanian,
Volume 2, Issue 2 (11-2016)
Abstract
The fine grain structure of friction-stir welded aluminum alloys is unstable during post weld heat treatment and some grains abnormally grown. In this study, the sequence of abnormal grain growth during T6 heat treatment of Al-7075 friction-stir weld and its effect on mechanical properties of the weld was studied. The results showed that heat treatment in 510 ˚C resulted in drastic grain growth in stir zone and fine equiaxed grains in the stir zone of as-welded joint were substituted by millimeter-scale irregular grains. Post weld heat treatment resulted in decrease in the tensile elongation from about 10% to 1.5% although the joint tensile strength improved by 28%. In addition, post weld heat treatment changed the fracture location from the
heat-affected zone to the stir zone.
, , ,
Volume 5, Issue 1 (9-2019)
Abstract
In this paper experimentally, the friction-stir welding of the polypropylene sheets with 40% glass fiber has been investigated. Comparison to other welding methods, the strength of the joint is the most important feature in this process. Many parameters such as tool geometry, rotational speed, linear velocity, and tilt angle are very important as input parameters in this type of welding. Therefore, in the present study, the effect of these parameters on the friction-stir welding of the polypropylene composite sheets have been extracted. Experiments are based on the Taguchi method and the orthogonal L9 array that are suitable for three-level designs. Statistical analysis have been performed as variance (ANOVA) and signal-to-noise ratio. Based on the results, the tool with a screw cone-cylindrical pin has a better apparent quality and higher tensile-shear strength. Results analyze show the rotational speed has the most significant effect on the tensile-shear strength and appearance of the weld. The joint with maximum tensile strength is obtained at rotational speed of 1000 rev/min, welding speed of 20 mm/min and tilt angle of 1 degree.