Search published articles


Showing 3 results for Magnesium Alloy

A. Abdollahzadeh, A. Shokuhfar,
Volume 5, Issue 1 (9-2019)
Abstract

In this study, friction stir butt welding of Mg and Al alloys with applying Zn interlayer was performed. To obtain optimum condition, a combination of two travel and three rotation speeds were selected. Mg-Zn and Mg-Al-Zn IMCs, Al solid solution and residual Zn, were the most common phases in the stirred zone, which eliminated the formation of Al-Mg intermetallics. The maximum mechanical properties were achieved for the joint fabricated at 35 mm/min and 600 rpm, caused to 24% improvement in tensile strength and around 3 times enhancement of elongation compared with Zn free sample FSWed at the same conditions. The fracture micrographs were consistent with corresponding ductility results. Fracture surfaces of Zn-added samples presented a fine texture with a mixture of brittle and ductile fracture feature, which was different from the coarse cleavage plane and fully brittle fracture of the joint without Zn interlayer. 
Dr. Seyedeh Zahra Anvari, Mr. Mohammad Reza Elahi,
Volume 5, Issue 2 (1-2020)
Abstract

Magnesium alloys are very attractive materials owing to their properties of low density, high specific strength and stiffness, good castability, and weldability. AZ31 magnesium alloys in terms of weldability has better situation than the other, so it has more applications than other magnesium alloys. In this study, TIG and pulsed TIG welding method was used to welding the AZ31 alloy and finally microstructure and mechanical properties of welds with metallography, scanning electron microscopy (SEM), tensile test were examined. The results showed that the heat input affected the size of grains that are leading to changes in mechanical properties. Sample was welded with TIG welding with minimum current has maximum strength among the samples both pulsed TIG welding and TIG method. It is observed that with increasing frequency in TIG welding, strength is reduced. Despite the same IP and IB, higher frequency has created a stronger welding. Also increases the frequency leads to more fine-grained samples, resulting in increased strength.
A. Etemadi, M. Kasiri-Asgarani, H. R. Bakhsheshi-Rad, M. Sadeghi Gogheri,
Volume 9, Issue 2 (1-2024)
Abstract

In this research, dissimilar joining of biodegradable AZ31 alloy to Ti-6Al-4V titanium alloy by rotary friction welding method was investigated with aim of preparation of pin or screw for orthopedic applications. optical and scanning electron microscope (sem) were used to investigate the microstructure, x-ray diffraction was conducted for phase analysis, torsion and micro-hardness tests were carried out to investigate mechanical properties, and polarization and electrochemical impedance spectroscopy were employed to evaluate corrosion resistance. in the welding procedure, rotational speed of 1100, 1200 and 1300 rpm and friction time of 2 and 4 seconds were considered as variable parameters, and two parameters of friction pressure and forge pressure were considered as constant parameters at 50 and 40 MPa, respectively. The microstructure of the joint zone showed that there is no deformation in the titanium alloy side. However, in the magnesium side, the greatest amount of deformation occurred with the distance from the joint line, where weld center zone (CZ), dynamic recrystallization zone (DRX), thermomechanical affected zone (TMAZ) and partial deformation zone (PDZ) are detected. The formation of intermetallic phases such as Mg2AlZn, Ti3Al and also the refining the grains size is the main reason for increasing the hardness of the magnesium side near the joint line up to 150 HV. The results of the torsion test showed that the welded sample has the highest shear strength of 81.51 MPa and also the highest corrosion resistance among other samples at a rotation speed of 1200 rpm and a friction time of 4 seconds.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb