Showing 24 results for Strength
A. Behjat, M. Shamanian, M. Atapour, M. Ahl Sarmadi ,
Volume 2, Issue 1 (8-2016)
Abstract
High-strength low alloy steels are a class of steels used in applications that require high strength and good weldability, including ship hulls, gas pipelines and oil industry. One way to build parts is fusion welding that create areas with a large grain size in the heat-affected zone and increased susceptibility to hydrogen cracking. One way to solve this problem is to use solid state friction stir welding process. In this study, microstructural evaluation and mechanical properties of friction stir welding X-60 cross sections examined by optical microscope and by tensile and micro-hardness tests. The results indicate that changing welding parameters and thereby, change the heat input during friction stir welding have a great impact on maximum temperature and cooling rate that cause creating ferrite and bainitic ferrite in the weld zone. This change in microstructure of weld zone cause to improve mechanical properties that increase yield strength from 380 MPa to 420 MPa .Also, the friction stir process cause increasing hardness of 220 Vickers to an average of 280 Vickers and uniform distribution of hardness in the cross-section of friction stir joints.
A. Ghaedrahmati, M. Mosallaee Pouryazdi,
Volume 3, Issue 1 (8-2017)
Abstract
A517 is a low alloy high-strength steels that due to its high strength, toughness and weldability is used in ship building and submarine hulks. The welded areas of this steel often require repairs. In this study, the effect of number of welding repair on microstructure and mechanical properties of A517 steel is studied. Four samples (samples without repair, once repaired, twice repaired, and three times repaired) were welded by SMAW welding. Microstructural studies were carried out by using optical and scanning electron (SEM) microscopes. The effect of the number of repairs on mechanical properties of samples were investigated by using tensile, bending, impact and hardness The profile of hardness illustrated that the hardness in the heat affected zone near the base metal increased by repeated repairs while the hardness of this zone reduced in the third repaired sample. By repeating the welding repair, tensile and yield strengths of the welding areas were reduced and fracture impact toughness of heat affected zone at -51○C was increased. Generally, the results of tensile tests of second and third repaired indicated that the strength of these samples were not meet the ASME IX standard requirements, so welding steel A517 in the second and third repairs is not acceptable.
, , ,
Volume 3, Issue 2 (1-2018)
Abstract
Cold roll bonding (CRB) is a solid state welding process, where the bonding is established by compressive plastic deformation of the metals. This process is applicable for a large number of materials. In addition, materials that cannot be bonded by traditional fusion-based processesmight be bonded by CRB process. In this research, cold roll welding of brass and IF steel was studied .The effects of process parameters such as reduction of thickness, pre-rolling annealingconditions and surface roughness on the mechanical propertiesof welded strips were investigated. The peeling and shear punch testswere used to investigate the mechanical properties of welded samples .It was observed that the bond andshear strengthswere enhanced by increasing the reduction and surface roughness. Also, annealing treatment before the CRB process increased the bond strength anddecreasedthe shear strength. Finally, optical and scanning electron microscopes were used to evaluate the fracture surfaces of the tensile and peelingtest specimens.
H. Rezaei Ashtiani, M. Shafiee,
Volume 4, Issue 1 (8-2018)
Abstract
Friction stir spot welding (FSSW) is a type of solid state welding that is used in the connection of small pieces and light metals such as aluminum alloy especially. The technical problem during melting of aluminum alloys is one of the most important reasons for developing application of friction stir welding for aluminum alloys. In this research, the effects of important processing parameters such as tool rotation speed, dwell time, plunge depth of tool and sheets thickness on the mechanical properties such as failure force and energy of FSS welded AA-3105 alloy have been experimentally studied using micro hardness and tensile tests. Tensile-shear tests show four different fracture modes of weld failure which consist of shear fracture, circumferential fracture, nugget pull out fracture and fracture in base material modes. The results show that the weld strength drops with increasing the tool rotation speed. Strength and hardness of weld and weld zone increase and then decrease with increasing dwell time of rotational tool which it can be obtained an optimum value of dwell time. Strength and fracture energy and load of welds increases with increasing the sheet thickness
M. Sabokrouh, M. Saroghi,
Volume 4, Issue 2 (1-2019)
Abstract
High strength low alloy steels are widely used in gas industry, so shield metal arc welding in pipelines to transport natural gas from Iran is of great importance. For experimental investigation of seam weld and integrity of girth weld, destructive and non-destructive tests are required. In this article the effects of normal heat treatment on properties of multi pass welding in different situations (6-7:30 , 7:30-9 , 9-10:30 , 10:30-12) with 36 in outside diameter is evaluated by chemical, metallography, tensile, toughness and hardness. The result shows that normalizing increases ferrite ratio in root pass and weld cap pass respectively 24 and 6 percent than base steel. Also the increase rate of ferrite in root, hot, filler, and the cap pass are respectively 32, 14, 12 and 7 percent before than normalizing. The elongation weld of was increased ratio than before the heat treatment in base metal respectively 65 and 5 percent. The impact energy alignment to weld (9-10:30) had a rate of 70 percent increase before the heat treatment. The increase rate of C, V and Ti in the weld zone according to base metal in situation of 6-7:30 are respectively 0.01, 0.003 and 0.005.
M. Sabokrouh,
Volume 5, Issue 1 (9-2019)
Abstract
Shield metal arc welding on the high strength low alloy steels in pipelines to transport natural gas from Iran is of great importance. In this article the effects of annealing heat treatment on properties of multi pass welding in different situations (6-4:30 , 4:30-3 , 3-1:30 , 1:30-12) with 36 in outside diameter is evaluated by chemical, metallography, tensile, toughness and hardness. Tensile test results showed the lowest yield strength (Vertical to weld and in position 6-4:30) equal to 348 MPa, and the lowest energy impact (Vertical to weld and in position 1:30-3) equal to 108J. The impact energy alignment to weld had a rate of 12 percent increase before the heat treatment. The amount of hardness variation in different areas and positions is negligible (less than 5 percent). Images of metallographic test made by light and electron microscopes demonstrated that the amount of perlite cap pass weld and heat affected zone near the weld metal were decreased compared to main metal to respectively 29 and 8 percent. The elongation weld of was increased ratio than before the heat treatment in base metal respectively 75 and 23 percent. The increase rate of C, V and Ti in the weld zone according to base metal in situation of 3-4:30 are respectively 0.02, 0.003 and 0.006.
M. Toghraei Semiromi, M. Mosallaee Pouryazdi, M. Kalantar, A. Seifoddini,
Volume 5, Issue 1 (9-2019)
Abstract
In the present study, effect of Ni alloying element on the characteristics of deposited weld metal of E7018-G electrode was evaluated. Therefore, electrodes contained different amounts of Ni (0-1.7wt.%) were designed, manufactured and welded via SMAW process. Microstructural studies revealed dichotomy effect of Ni on the deposited weld metal microstructure, i.e. increasing the Ni content up to 1.2wt.% improved the formation of acicular ferrite in the weld metal microstructure and caused significant grain refinement at the reheated zone of weld metal. While, higher Ni content (>1.2wt.%) resulted in some raising in the widmannstatten ferrite content in the weld metal. Strength multiplied by impact energy parameter (UTS×CVN) was used for mechanical properties assessment. Mechanical properties evaluation revealed the highest UTS×CVN parameter achieved in the weld metal contained 1.2wt.% Ni. Hardness of the weld metal increased with increasing Ni content which is related to the formation of micro constituents in the microstructure of weld metal and increasing their content with increasing Ni content.
, , ,
Volume 5, Issue 1 (9-2019)
Abstract
In this paper experimentally, the friction-stir welding of the polypropylene sheets with 40% glass fiber has been investigated. Comparison to other welding methods, the strength of the joint is the most important feature in this process. Many parameters such as tool geometry, rotational speed, linear velocity, and tilt angle are very important as input parameters in this type of welding. Therefore, in the present study, the effect of these parameters on the friction-stir welding of the polypropylene composite sheets have been extracted. Experiments are based on the Taguchi method and the orthogonal L9 array that are suitable for three-level designs. Statistical analysis have been performed as variance (ANOVA) and signal-to-noise ratio. Based on the results, the tool with a screw cone-cylindrical pin has a better apparent quality and higher tensile-shear strength. Results analyze show the rotational speed has the most significant effect on the tensile-shear strength and appearance of the weld. The joint with maximum tensile strength is obtained at rotational speed of 1000 rev/min, welding speed of 20 mm/min and tilt angle of 1 degree.
R. Tamasgavabari, A. Ebrahimi, S. M. Abbasi, A. Yazdipour ,
Volume 5, Issue 1 (9-2019)
Abstract
In this research, the effect of vibration at the resonant range (75 Hz) on the hardness and tensile strength of AA-5083-H321 aluminum alloy, were welded by gas metal arc welding (GMAW) investigated. Vibration forces were ranged from 850 N to 2200 N, under identical welding parameters. Tensile strength and hardness testing of welded samples were performed. After mechanical tests, the fracture surfaces of welds were examined using scanning electron microscope (SEM) and discussed. The results showed that with increasing vibration force, the tensile strength and fracture strength of the specimens were welded during vibration, were increased by about 3 and 9 percent, respectively, compared to the non-vibrated weld sample. However, no significant change was observed in the hardness of the welded specimens. Mean grains size and heat affected zone of the sample was welded was welded with conventional GMAW, were about 200 μm and 1800 μm, but due to inducing vibration, as vibration force increased from 850 N to N 2200 N, Mean grains size was reduced to about 75 μm and HAZ was reduced from about 1000 μm to 700 μm, that is, about 44 to 61%.
N. Marchin, A.r. Soltanipoor, K. Farmanesh,
Volume 5, Issue 2 (1-2020)
Abstract
In this study, the effect of tool's advance velocity on the mechanical behavior of the Al-7075 alloy during friction stir welding was simulated. In this simulation, the Lagrangian method with rigid-Visco-plastic material was used. The results of the process temperature obtained by the simulation method were verified by the experimental welding test. Using the characteristic stress, strain and temperature relationships in the Al-7075 alloy, the changes and the relationship between the material strength during the welding process by simulation was studied. The generated simulation defects was verified by experimental test.
M. Sabokrouh ,
Volume 5, Issue 2 (1-2020)
Abstract
In this article the effects of carburizing heat treatment on girth weld with containing titanium oxide and titanium carbide nanoparticles (X-65 grade of gas pipeline) is evaluated. The charpy results show that in the carburized sample containing titanium oxide and titanium carbide nanoparticles compared to the no heat treatment sample (containing titanium carbide and titanium carbide nanoparticles), has been respectively increased by 6% and 42%. Also, the ultimate strength carburized sample containing titanium oxide nanoparticles and titanium carbide nanoparticles compared to the no heat treatment sample (containing titanium oxide and titanium carbide nanoparticles) has been respectively increased by 20% and 28%. The results show that the fatigue life in both carburized nano-alloy samples has been increased. The fatigue life in the carburized sample of titanium carbide nanoparticles has increased more than that of titanium oxide nanoparticles. The fatigue test results show that in the carburized sample containing titanium carbide nanoparticles compared to the tempered sample containing titanium oxide nanoparticles, fatigue life (150-N force) has been increased by 20%. In this loading the fatigue life (tempered sample containing titanium carbide nanoparticles compared to the no heat treatment sample) has been increased by 31%. The results show that the residual stress in both carburized nano-alloy samples has been decreased The hole drilling strain gage results show that in the tempered sample containing titanium oxide oxide nanoparticles and titanium carbide nanoparticles compared to the no heat treatment sample (containing titanium oxide nanoparticles and titanium carbide nanoparticles), hoop residual stresses has been respectively decreased by 9% and 6%.
A. Ghandi, M. Shamanian, M. R. Salmani3,
Volume 6, Issue 1 (8-2020)
Abstract
The structural and hardness developed in advanced high-strength steel DP590 have been investigated with the help of optical microscopy and scanning electron microscopy on resistance spot welded specimens. The hardness diagram of the weld sections was prepared by microhardness test and the temperature peak and heat distribution were simulated by menas of the Abaqus software. The results show that according to the temperature generated in each region of the weld nugget, the HAZ and base metals have different microstructures, and these difference affects the hardness of the regions. The presence of tempered martensite islands with a fraction of 44% in ferrite matrix in base metal, mainly martensitic structure in the nugget, and martensitic structure along with scattered areas of ferrite in the HAZ was observed. The results of the microhardness tests showed difference in hardness values of the regions, and also it was observed that the hardness values increased in the HAZ and weld zone. The hardness values measured in the nugget, base metal, and HAZ were around 400, 200, and 450 HV which were in accordance with the observed structures
Hamed Tirband, Davood Akbari, Mohammad Golzar,
Volume 7, Issue 1 (8-2021)
Abstract
In this research, tensile strength of ultrasonic welded parts made of thermoset polymer-reinforced glass fiber with surface preparation has been investiagted. In order to elevate the adhesion of two surfaces laser grooving method has been applied. Two type of thermoplastic materials including Plymethyl methacrylate (PMMA) and polypropylene (PP) have been used as interlayers. Influences of main welding parameters were investigated. The results show that the force and compression parameters in these joints have been ineffective parameters and in higher weld welds, the thermosetting resin has started thermal degradation. The pressure considered constant and set at 2 bar, welding time set at 1.6 seconds and holding time considered 3 seconds. The results showed that the minimum tensile strength of welded samples with laser surface preparation method is 1286 N, which is much more than maximum tensile strength of welded samples without any surface preapration. This indicates that laser beam surface preparation is an effective method in improving of the adhesion strength of thermoset polymeric parts.
Mojtaba Vakili-Azghandi, Ali Shirazi,
Volume 7, Issue 1 (8-2021)
Abstract
The results showed that the microhardness and tensile strength of the heat-affected zone as the weakest welding zone in some samples reduced up to 30% compared to the base metal. On the other hand, a decrease in rotational speed, an increase in tool movement speed, and the number of welding passes cause grain refinement and improve mechanical properties. However, the effect of decreasing the rotation speed and increasing the tool movement speed were shown to be more favorable due to less heat production. Accordingly, the hardness in the welded zone with a rotational speed of 600 rpm and a movement of 80 mm/min increased from 90 to 125 HV compared to the base metal, and the hardness reduction in the zones around the welded zone was only 5 Vickers. It was also found that reducing the grain size of the stir zone, while improving the mechanical properties leads to increasing the density of the surface pasive layer, preventing the attack of aggressive chlorine ions and thus reducing the corrosion intensity by 50 times in saline seawater.
H. Tazikeh, S. E. Mirsalehi, A. Shamsipoor,
Volume 7, Issue 1 (8-2021)
Abstract
In this research, the effect of bonding temperature on the microstructure and mechanical properties of Inconel 939 super alloy by transient liquid phase bonding method. For this purpose, the middle layer of MBF20 with a thickness of 50 microns and three temperatures of 1060 °C, 1120 °C, 1180 °C and a time of 45 minutes have been used. In order to evaluate the microstructure, a scanning electron microscope equipped with an elemental analysis system has been used. Vickers hardness test and shear strength test have been used to evaluate the mechanical properties. The research findings showed that with increasing temperature from 1060 °C to 1120 °C, the width of the athermal solidification zonedecreased from 38µm to 35µm and with increasing temperature at 1180 °C, the athermal solidification zone was completely removed and isothermal solidification zone was replaced. In addition, with increasing temperature, the hardness in the joint center decreases and the shear strength increases.
Mehdi Safari, Amir Hossein Rabiee, Jalal Joudaki,
Volume 7, Issue 1 (8-2021)
Abstract
Resistance Spot Welding (RSW) is one of the effective manufacturing processes used widely for joining sheet metals. Prediction of weld strength of welded samples has great importance in manufacturing and different methods are used by researchers to find the fracture force. In this article, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized for prediction of joint strength in welded samples by RSW. A design of experiments (DOE) is prepared according to effective process parameters includes welding current, welding cycle, cooling cycle and electrode force. The sheet metal samples prepared from AISI 1075 carbon steel. Tensile test specimens are prepared and the tensile-shear strength of welded samples are measured. A model is developed according to ANFIS and trained according to teaching-learning based optimization algorithm. 70 % of test data used for network train and the remained 30 % used for access the accuracy of trained network. The accuracy of the trained network was assessed and the results show that the trained network can predict the joint strength with high accuracy. The determination factor (R2) and mean absolute percentage error (MAPE) are 0.99 and 0.48 % for trained data and 0.95 and 6.2% for test data.
Majid Aslani, Mahdi Rafiei,
Volume 7, Issue 2 (1-2022)
Abstract
In this study, in order to modify the weld structure obtained from repair welding of AZ91C magnesium alloy and improvement of tensile strength, input parameters such as current intensity and preheating temperature were optimized for this alloy. T6 heat treatment was separately done befor and after the welding to homogenize the microstructure and improvement of the mentioned properties. Using variance analysis, the accuracy of the models was checked and analyzed. Optical microscopy, scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS) and tensile tests were used to characterize the microstructure and mechanical properties of the repaired parts. The results of microstructural studies showed that the samples 2 (samples that were subjected to T6 heat treatment before and after welding) had continuous precipitates which these precipitates affected the strength due to the interruption of more slip planes and creating stronger barriers in the path of dislocations, resulting the better mechanical properties as compared with samples 1 (samples that were subjected to heat treatment only after welding). Also, by plotting response surface graphs and level diagrams, the highest tensile strength for samples 1 was observed at preheating temperatures of 493 to 513 K and current intensities of 80 to 90 A, and for samples 2 at temperatures of 513 to 553 K and current intensities of 100 to 110 A.
H. Tirband, D. Akbari, M. Sadeh,
Volume 8, Issue 1 (8-2022)
Abstract
Todays, application of composite materials has been increased in various industries due to their special strength properties and also other unique features. One of the important things during making of such materials, is their connection to each other. In this article, the Joining of heat-hardened parts with surface preparation with the help of laser, simple and rough, has been investigated. The main goal is to investigate the better surface adhesion mechanisms of the connection compared to the simple surface, as well as to create practical approaches to increase the adhesion strength of the thermosetting parts. The composites were made of heat-hardened epoxy resin (which hardens after 12 hours at room temperature) and two-dimensional woven glass fibers and were connected by glue after volume heating at a temperature of 180-200 degree Celsius. In this research, the overlapping surface of the part was engraved by laser in circular patterns. The raw parts were prepared by manual polishing and mechanical abrasion. The results show that by examining the effect of surface roughness and composite thickness, the highest value of shear strength is related to the surface roughness compared to other preparation methods. Surface preparation increases the amount of adhesive penetration in the parts and expands the tensile strength. The thickness also has a conditional effect on the strength of the connection.
Gh. Khalaj, A. Fadaei,
Volume 9, Issue 1 (5-2023)
Abstract
In this research, the effect of post weld heat treatment on the microstructure and mechanical properties of the three-layer explosion welding joint of austenitic steel 321-aluminum 1050-aluminum 5083 was investigated. The welded samples were heat treated at 250 and 350°C for 10000 seconds. The structure and properties were investigated using optical microscope, scanning electron microscope, microhardness measurement and shear-compressive strength. The results showed that in all conditions, the interface of aluminum 5083-aluminum 1050 was smooth and with complete continuity; However, the interface between stainless steel 321 and aluminum 1050 had a reaction layer with variable and discontinuous thickness. During the heat treatment, the thickness of the interface layer increases according to the diffusion kinetics and reaches 18.6 microns in the maximum value. With the increase of heat treatment temperature, the average concentration of aluminum in the reaction layer of the interface increased from 85% to more than 90%, but the concentration of iron decreased from 10% to less than 5%. Also, shear-compressive strength decreases from 94.6 to 56.7 MPa.
A. Etemadi, M. Kasiri-Asgarani, H. R. Bakhsheshi-Rad, M. Sadeghi Gogheri,
Volume 9, Issue 2 (1-2024)
Abstract
In this research, dissimilar joining of biodegradable AZ31 alloy to Ti-6Al-4V titanium alloy by rotary friction welding method was investigated with aim of preparation of pin or screw for orthopedic applications. optical and scanning electron microscope (sem) were used to investigate the microstructure, x-ray diffraction was conducted for phase analysis, torsion and micro-hardness tests were carried out to investigate mechanical properties, and polarization and electrochemical impedance spectroscopy were employed to evaluate corrosion resistance. in the welding procedure, rotational speed of 1100, 1200 and 1300 rpm and friction time of 2 and 4 seconds were considered as variable parameters, and two parameters of friction pressure and forge pressure were considered as constant parameters at 50 and 40 MPa, respectively. The microstructure of the joint zone showed that there is no deformation in the titanium alloy side. However, in the magnesium side, the greatest amount of deformation occurred with the distance from the joint line, where weld center zone (CZ), dynamic recrystallization zone (DRX), thermomechanical affected zone (TMAZ) and partial deformation zone (PDZ) are detected. The formation of intermetallic phases such as Mg2AlZn, Ti3Al and also the refining the grains size is the main reason for increasing the hardness of the magnesium side near the joint line up to 150 HV. The results of the torsion test showed that the welded sample has the highest shear strength of 81.51 MPa and also the highest corrosion resistance among other samples at a rotation speed of 1200 rpm and a friction time of 4 seconds.