A. Anbarzadeh, H. Sabet,
Volume 3, Issue 1 (8-2017)
Abstract
The aim of this study is investigation of TLP variables on microstructure and mechanical properties of Al2024 to Ti-6Al-4V bonding for TLP joint. For this purpose, the sheets were prepared with dimension of 130×32×3 mm from Ti-6Al-4V and Al2024 alloys and 50µm thick Sn-5.3Ag-4.2Bi foil as interlayer. Sn-5.3Ag-4.2Bi foil prepared with dimension of 32×25 mm. Two alloys was joint together by process of Successive stage Transient Liquid Phase (S-TLP). This process is contains two stages. The first one is Transient Liquid Phase (TLP) of Ti-6Al-4V and the second stage is diffusion bonding of Al2024 to Ti-6Al-4V. In the first stage, TLP process was used for joining of Ti-6Al-4V to Ti-6Al-4V samples. This process carried out under argon gas at 2 atmosphere and at 620 °C. After the end of first stage, the samples were broken from the joint region and then, the obtained surface was jointed to Al2024 with new interlayer. In the second stage, that is soldering, the samples were placed in furnace under argon gas at 2 atmosphere and at 453 °C. Maximum tensile strength of diffusion bonding was about 62 Mpa.
M. J. Bagban, M. Mosallaee Pour, H. Hajisafari, A. Babnejad, A. Saboori,
Volume 8, Issue 1 (8-2022)
Abstract
In the present study, the microstructure and mechanical properties of the dissimilar joint of Inconel 625 (IN-625) superalloy to austenitic stainless steel AISI316L (SS-316L) via AWS-BNi3 interface layer and transient liquid phase (TLP) bonding process were evaluated and necessary conditions for creating an efficient joint were determined. TLP bonding was performed in temperature and time range of 1050-1150ºC and 5-20min, respectively, under the protection of argon shielding gas with a purity of 99.9995%. Microstructural (OM and SEM) and phase (XRD) studies revealed that bonding at 1150 ° C for 20 min results in completion of isothermal solidification and develops a uniform gamma (γ) phase at the bonding zone. Cooling the samples before completion of isothermal solidification results in the formation of chromium and molybdenum-rich eutectic compounds at the bonding centerline. The continuous morphology of the eutectic compounds caused a sharp drop in the shear strength of the specimens (~50% reduction of shear strength). The inter-diffusion of alloying elements between the bonding area and the surrounding base metal results in the formation of chromium carbide in the IN-625 and chromium- boron compounds in the SS-316L, which increased the microhardness of these areas compared to the base metals and the bonding zone.