Search published articles


Showing 3 results for Ti6al4v Alloy

Dr Seyed Mahdi Rafiaei, Eng. Gholamhosein Eslami,
Volume 7, Issue 2 (1-2022)
Abstract

In this research, Ti-6Al-4V alloy sheet with a thickness of one millimeter with butt joint design was welded by tungsten-gas arc welding process using pulse current (PCGTAW) and using AMS 4954G filler metal. In this study, the effect of pulse system frequency on microstructure and mechanical properties was investigated by optical microscopy, Vickers hardness and tensile strength tests. In the non-frequency welding sample, due to the lack of pulse current and lower cooling rate of the molten pool, the formation of large amounts of soft phases of the Weidmann-Statten layer in the weld metal region is possible. Finally, in this method, the lowest average hardness of 341 Vickers was obtained. The experimental results showed that using pulsed current and increasing the pulse frequency up to 450 Hz increased the cooling rate of the molten pool, followed by increasing the amount of martensitic phase α 'in the form of a basket in the weld metal region and finally increasing the average microhardness in this region. In other words, using the maximum frequency led to a significant increase in hardness up to 367 Vickers in the weld zone. Finally, using the tensile strength test, it was shown that in all the samples, failure occurred from the base metal area, which was a very good phenomenon due to the proper welding quality of the samples.
A. Mahdavi Shaker, H. Momeni, A. Khorram, A. Yazdipour,
Volume 8, Issue 2 (1-2023)
Abstract

This study aimed to investigate the effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of the dissimilar joint between 17-4PH precipitation hardening stainless steel and Ti6Al4V alloy. For this purpose, the welding of these two alloys was done without an interlayer and with an interlayer of copper with a thickness of 0.8 mm. Two different welding speeds of 0.7 and 0.9 m/min with four levels of beam offset  (0, 0.2, 0.4 and 0.6 mm) from the center of the interlayer towards the steel were used to perform experiments. The results show that in the direct welding of titanium and steel, the joint structure consists of TiFe and TiFe2+TiCr2 intermetallic compounds with high hardness (about 900 Vickers). In the welding of titanium and steel by using the copper interlayer, the structure in the weld pool and the interface between the weld pool and steel includes a solid solution of copper and TiFe2 intermetallic compounds, and at the interface between the weld pool and titanium includes Ti+Ti2Cu and TiFe. The hardness of the welding zone in the samples welded with copper interlayer is about 400 Vickers. The highest value of hardness is observed at the interface between the weld pool and titanium alloy, as well as at the interface between the weld pool and steel, which is due to the presence of intermetallic compounds with high hardness. By increasing the welding speed and beam offset, the hardness decreases, which is due to the reduction of brittle intermetallic compounds in the joint structure. The welded sample with a welding speed of 0.9 m/min and beam offset of 0.6 mm has the highest shear strength equal to 160 MPa.
 

A. Mahdavi Shaker, H. Momeni, A. Khorram, A. Yazdipour,
Volume 9, Issue 1 (5-2023)
Abstract

This study aimed to investigate the effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of the dissimilar joint between 17-4PH stainless steel and Ti6Al4V alloy. For this purpose, the welding of these two alloys was performed with an copper interlayer with a thickness of 1 mm. Two different welding speeds of 0.7 and 0.9 m/min with four levels of beam offset  (0, 0.2, 0.4 and 0.6 mm) from the center of the interlayer towards the steel were used to accomplish the experiments. The results show that by using the copper interlayer with thickness of 1 mm, the cracks caused by the formation of intermetallic compounds are removed from the weld pool. At the interface between the titanium and the weld pool, at the beam offset  of 0 and 0.2 mm, a solid solution of copper and TiCu2 intermetallic compounds is formed, while at the beam offset  of 0.4 and 0.6 mm, a solid solution of copper and TiCu intermetallic compounds is formed. The weld pool, at the beam offset  of 0 and 0.2 mm, consists of TiCr2+TiFe2 intermetallic compounds while at the beam offset  of 0.4 and 0.6 mm, solid solution of iron (α-Fe), solid solution of copper and TiCu intermetallic compounds are formed. The highest value of hardness is observed at the interface between the weld pool and the titanium alloy, as well as at the interface between the weld pool and the steel, which is due to the presence of intermetallic compounds with high hardness in these regions. By increasing the welding speed and the beam offset, the hardness value decreases, which is due to the reduction of brittle intermetallic compounds in the joint structure. By increasing the beam offset from 0.4 mm to 0.6 mm at the speed of 0.7 m/min, the shear strength increases from 180 MPa to 210 MPa and at the speed of 0.9 m/min, the shear strength raises from 230 MPa to 250 MPa. The welded sample with the welding speed of 0.9 m/min and the beam offset of 0.6 mm has the highest shear strength equal to 250 MPa. The failure in all samples happened at the interface between the weld pool and the titanium alloy, which shows that the weakest region in the joint is this interface.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb