Search published articles


Showing 4 results for Weld Penetration

M. Mosallaee, F. Dehghantalebi , S. Ghasemi , A. Mashreghee,
Volume 1, Issue 1 (1-2016)
Abstract

Cellulose is a natural biopolymer with the general (C6H10O5)n formula, which according to AWS A5.5 standard, more than 40wt% of coating of cellulosic electrodes is consisted of cellulose. In this study to evaluate the effect of cellulose type on the performance of E8010-P1 cellulosic electrode, equal  amounts  of two celluloses with the same commercial properties but produced by two different companies, were used for production of two E8010-P1 electrodes.Experimental studies illustrate significant difference between structural and mechanical properties of deposited weld metals from these electrodes. FTIR, DTA and XRD testes of as-received celluloses show despite the same brandforthese celluloses, their properties such as bonds types,thermal behavior and crystallinity are different that cause variation ofweld metal penetrate and tensile strength around 25±2% and 5±2%respectively.


Y. Mollapour, M. Aghakhani, H. Eskandari, H. Azarioun2,
Volume 2, Issue 2 (11-2016)
Abstract

This paper investigates the effect of boehmite nano-particles surface adsorbed byboric acid (BNBA) along with other input welding parameters such as welding current, arc voltage, welding speed, nozzle-to-plate distance on weld penetration. Weld penetration modeling was carried out using multi-layer perceptron artificial neural network (MPANN) technique. For the sake of training the network, 70% of the obtained data from experimentation using five-level five-factor central composite rotatable design of experiments was used. The performance of the network shows a good agreement between the experimental data and the data obtained from the network. Hence, it is to be concluded that MPANN is highly accurate in predicting the weld penetration in SAW process.


F. Pahnaneh , M. Aghakhani *, R. Eslami Farsani, M. Karamipour1,
Volume 6, Issue 1 (8-2020)
Abstract

This paper reports the applicability of fuzzy logig (FL) to predict the hardness of melt zone (HMZ) during the gas metal arc welding (GMAW) process, which is affected by the combined effect of ZrO2 nano-particles and welding input parameters. The arc voltage, welding current, welding speed, stick-out, and ZrO2 nano-particles were used as the input parameters and HMZ as the response to develop FL model. The predicted results from FL were compared with the experimental data. The most important input parameter affecting the HMZs was the addition of ZrO2 nanoparticle coatings with a thickness of 1 mm, which increased the hardness from 78 to 84 HRB. The correlation factor value obtained was 99.98% between the measured and predicted values of HMZ. The results showed that FL is an accurate and reliable technique for predicting HMZ because of its low error rate. Also, the presence of ZrO2 nano-particles in the weld pool has increased the penetration up to 2 times.
 
R. Karimpoor, A. Farzadi, A. Ebrahimi ,
Volume 7, Issue 1 (8-2021)
Abstract

In the present study, effect of current, welding speed and preheat temperature during FB-TIG welding of AA5083 aluminum alloy was studied. Using the Taguchi method, 9 different tests were designed to investigate the effect of welding parameters on the penetration depth. Consistent with predictions, increasing the current and preheat temperature, and reducing the welding speed led to an increase in penetration depth. The maximum penetration depth of 8.02 mm was achieved at the current of 220 A, welding speed of 120 mm/min, and the preheat temperature of 100 °C. Taguchi analysis showed that increasing the welding current and preheat temperature had a more significant effect than the welding speed. Microstructural analysis indicated that the weld metal is fine-grained, along with coarse-grain in the HAZ of all samples. Many pores were observed in the samples with high welding speed and high welding current in the fusion zone. The sample with the highest heat input had the highest penetration depth. This sample had the highest elongation, equal to 69% of the base metal. Moreover, microhardness test demonstrated that the hardness of this sample dropped sharply from 70 Vickers to 58 Vickers in the HAZ.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb