Showing 125 results for Welding
Dr H. Mostan, Dr M. Shamanian, Dr M. Safari,
Volume 1, Issue 1 (1-2016)
Abstract
FeCo-V alloys are one of the most important groups of magnetic material which currently used in high speed engines due to their excellent magnetic and mechanical properties. Welding of these alloys is a great challenge since various phase transformation result in significant changes in magnetic and mechanical properties. In this research ultra-thin FeCo-V magnetic foils were welded using laser and electron beam welding processes. After development of mathematical models, working limits of process parameters were chosen to obtain welded joints which have simultaneously appropriate maximum energy product and mechanical strength.
B. Sadeghian, M. Atapour, A. Taherizadeh ,
Volume 1, Issue 1 (1-2016)
Abstract
Today, steel to aluminum joints are used to facilitate transportation and fuel consumption. These joints are applied from nuclear, aerospace and naval to automobile and kitchen industries. According to previous studies fusion welding processes are not suitable methods for these joints, solid-state welding, especially friction stir welding, is a proper way to use for these joints. However, using this method for these two metals needs adequate prediction of temperature distribution and material flow to obtain enhanced joints. In this study, a finite element method is used to predict the temperature distribution. In addition, a computational fluid dynamics solution is coupled with the thermal solution. Therefore, the flow rate, strain rate and dynamic viscosity is obtained. Also, the joint morphology is predicted using the Level Set method. It is shown the material flow depends on flow rate, strain rate and dynamic viscosity and is intensively function of rotational speed. Additionally, offset to the aluminum side improves the morphology of the stir zone.
Dr M. Safari, Dr H. Mostaan,
Volume 1, Issue 1 (1-2016)
Abstract
Weldability of high carbon steels due to the high percentage of carbon and consequently formation of martensitic structure is very poor. In this research, resistance spot welding of eutectoid high carbon steel 1075 is experimentally and numerically investigated from various points of view. The effect of welding current as one of the most effective parameters on failure mode, mechanical properties and nugget size diameter in resistance spot welding is analyzed with experimental tests and numerical simulations. The results show that with increase of welding current, the diameter of nugget size is increased and consequently the failure mode changes from interfacial mode to pull out mode.
M. Ahl Sarmadi, M. Shamanian, H. Edris, A. Behjat, M.a. Mohtadi Bonab, J. Szpunar,
Volume 1, Issue 1 (1-2016)
Abstract
In this study the microstructure and mechanical properties of super duplex stainless steel UNS S32750 welding was studied. For this purpose, the method of gas tungsten arc and filler metal AWS ER2594 with a diameter of 4.2 mm was used. In order to investigate the microstructure light microscopy and electron microscopy equipped with backscatter electron diffraction were used. Mechanical properties were studied by hardness and tensile tests. Weld metal had Cast structure with austenite in the dendrite form located in ferrite matrix. It was also observed in the melting zone after welding, the ferrite volume fraction decreased to 50 percent 60% base metal ferrite) ,Due to the low cooling rates and high heat input method in the gas tungsten arc welding. Vickers micro-hardness test method was carried out on the samples showed that average about 285 Vickers hardness of base metal; however, hardness in the fusion region due to increased austenite fraction fell to 250 Vickers. But hardness in the heat-affected zone due to lower volume fraction of austenite and ferrite phase formation of chromium carbide intermetalic compounds increased to 340 Vickers. The results of the tensile test showed that the tensile strength decreased with increasing heat input, because of increase the size of grains due to the increased heat input.
S. Sakiyan, H. Sabet, M. Abbasi ,
Volume 2, Issue 1 (8-2016)
Abstract
This Paper presents the welding parameter's effect (forging pressure, welding time) on macrostructure and mechanical properties of friction welding valve steel HNV3 to Nimonic 80A super alloy. For this purpose, two rods with 20 mm diameters are prepared and with using different parameters (Increase forging pressure and welding time) by friction welding method are welded together. Tensile Test carried out on samples for investigating the effect of a parameter. It was discovered that when the welding parameters used in connecting HNV3 and Nimonic 80A Superalloy couple through friction welding were selected correctly; strength of the connection would increase compared to the main material.
M. Ansaripour, A. Soltanpoor, A. Ghasemi, M.r. Dehnavi,
Volume 2, Issue 1 (8-2016)
Abstract
The aim of this study was to evaluate the mechanical properties and corrosion behavior of friction stir welding (FSW) connection of A517 (B) steel plate. Mechanical properties and corrosion behavior of weld zone were evaluated after reaching to optimum FSW microstructure with the lowest martensite phase. Thus, after the identifying phase microstructure by SEM and XRD analysis, mechanical properties were analyzed by micro-hardness and tensile test. Micro hardness data shows slight increases in stir zone (SZ) compared with the base metal (BM); although a reduction of about 17% in hardness of heat-affected zone (HAZ) was sensible. Reduction of hardness in the HAZ was appeared as drop by about 12 percent of the yield strength and 19 percent of ultimate strength compared with BM. SEM images from fracture surface of the tensile sample showed bi-modal distribution of large and small Dimples being sings of softness of HAZ .Comparing corrosion behavior in solution consist of 3.5 wt% of NaCl showed that there was no passive layers to prevent dissolution of the metal in the SZ and BM. while BM and SZ had fairly similar corrosion rates, Difference of 50 mV between corrosion potential of SZ and BM showed that in galvanic condition, corrosion resistance of BM could be lower than SZ.
M. Safari, H. Mostaan, A. Bakhtiari,
Volume 2, Issue 1 (8-2016)
Abstract
In this research, lap joint frictionstir welding of IF sheets with thickness of 0.7 mm is investigated. For this purpose, mechanical properties of joints and also microstructural evolutions are studied. It was found that increase in tool rotational speed and decrease in travel speed results in increase in fracture stress of welded joints. Texture study indicates that no changes can be observed in texture components after friction stir welding. This phenomenon in texture components can be related to high stacking fault energy of IF steel and consequently severe dynamic recrystallization during welding. The results show with increase in the tool rotational speed between 900-1400 Rev/min, ultimate force of fracture of friction stir welded joints is increased. Also, it is concluded from results that with increase in tool travel speed between 50-160 mm/min, ultimate force of fracture of welded joints is decreased. Finally it is proved from results of this paper that in the frictionstir welding of IF sheets with thickness of 0.7 mm, maximum force of fracture of welded joints is achieved in rotational speed of 1400 Rev/min and travel speed of 105 mm/min.
R. Ghasemi, E. Heshmat Dehkordi, M. Shamanian,
Volume 2, Issue 1 (8-2016)
Abstract
In this study, microstructural features and mechanical properties of Incoloy 825-316L stainless steel dissimilar joints have been investigated. For this purpose, pulsed gas tungsten arc welding method was employed and 316L, Inconel 82 and Inconel 625 alloys were used as filler metal. First, specimens were cut. Pulsed gas tungsten arc welding was performed using peak and base currents of 220 A and 110 A, respectively. Microstructure of welded joints was studied using metallographic observations and energy dispersive spectroscopy (EDS) analysis. In order to evaluate the mechanical properties, tensile and microhardness measurements were done on the joints. In all specimens, dendritic and equiaxed and/or cellular growth of austenite phase was observed. Incoloy 625 weld metal had the finest dendritic structure. Tensile test results revealed the ductile fracture with a high percent of elongation for all specimens. The highest tensile strength and percent of elongation of 610 MPa and 48% were obtained for specimen welded using Inconel 625 filler metal. Inconel 625 and 316 stainless steel weld metals showed the highest and lowest microhardness with values of 232 HV and 224 HV, respectively.
M. Sadeghi Gogheri, M. Shabani, E. Mirzapour, M. Kasiri, K. Amini,
Volume 2, Issue 1 (8-2016)
Abstract
In this study, commercially pure titanium and aluminum alloy 5083 in connection rotational speed of 1120 rpm and a feed rate of 50 mm per minute for butt welding by friction stir welding has been successfully completed. Micro-structure, hardness and tensile test was conducted on the connection. Welding area is a composite of aluminum and titanium particles that the particles plays an important role in increasing hardness and tensile strength. Welding area is also has three areas. Vickers hardness is 480 times the area of welding means that the hardness in the area of the base metal of titanium and aluminum increased by 16% and 60% for titanium aluminum intermetallic compounds is created in the area is weld.
A. Behjat, M. Shamanian, M. Atapour, M. Ahl Sarmadi ,
Volume 2, Issue 1 (8-2016)
Abstract
High-strength low alloy steels are a class of steels used in applications that require high strength and good weldability, including ship hulls, gas pipelines and oil industry. One way to build parts is fusion welding that create areas with a large grain size in the heat-affected zone and increased susceptibility to hydrogen cracking. One way to solve this problem is to use solid state friction stir welding process. In this study, microstructural evaluation and mechanical properties of friction stir welding X-60 cross sections examined by optical microscope and by tensile and micro-hardness tests. The results indicate that changing welding parameters and thereby, change the heat input during friction stir welding have a great impact on maximum temperature and cooling rate that cause creating ferrite and bainitic ferrite in the weld zone. This change in microstructure of weld zone cause to improve mechanical properties that increase yield strength from 380 MPa to 420 MPa .Also, the friction stir process cause increasing hardness of 220 Vickers to an average of 280 Vickers and uniform distribution of hardness in the cross-section of friction stir joints.
Y. Najafi , F. Malekghaini, Y. Palizdar, S. Gholami,
Volume 2, Issue 1 (8-2016)
Abstract
Recent research suggests that extraordinary combinations of strength and ductility can be achieved in the so-called TRIP steels. With the development of these steels, welding with small weld nugget size and acceptable strength are needed. For these reasons present study was carried out to investigate the effect of heat input onweld size, microstructure and the hardness of the welded metal of 0.4%C- 4%Al δ-TRIP steel after continues fiber-laser welding process. To achieve this goal a bead on plate welding with three different values of heat input 28, 60 and 80 J/mm were used.The results of welding process revealed that by increasing the heat input, cooling rate decreased and the volume percent of the δ-ferrite in weld metal increased due to the availability of sufficient time for partitioning of Al in high heat input which leads to the stable δ-ferrite and as a result the difference between the hardness of the weld metal in comparison to the base metal decreased.
M. Mohammadi Zahrani, M. Shamanian,
Volume 2, Issue 2 (11-2016)
Abstract
The fine grain structure of friction-stir welded aluminum alloys is unstable during post weld heat treatment and some grains abnormally grown. In this study, the sequence of abnormal grain growth during T6 heat treatment of Al-7075 friction-stir weld and its effect on mechanical properties of the weld was studied. The results showed that heat treatment in 510 ˚C resulted in drastic grain growth in stir zone and fine equiaxed grains in the stir zone of as-welded joint were substituted by millimeter-scale irregular grains. Post weld heat treatment resulted in decrease in the tensile elongation from about 10% to 1.5% although the joint tensile strength improved by 28%. In addition, post weld heat treatment changed the fracture location from the
heat-affected zone to the stir zone.
Y. Mollapour, M. Aghakhani, H. Eskandari, H. Azarioun2,
Volume 2, Issue 2 (11-2016)
Abstract
This paper investigates the effect of boehmite nano-particles surface adsorbed byboric acid (BNBA) along with other input welding parameters such as welding current, arc voltage, welding speed, nozzle-to-plate distance on weld penetration. Weld penetration modeling was carried out using multi-layer perceptron artificial neural network (MPANN) technique. For the sake of training the network, 70% of the obtained data from experimentation using five-level five-factor central composite rotatable design of experiments was used. The performance of the network shows a good agreement between the experimental data and the data obtained from the network. Hence, it is to be concluded that MPANN is highly accurate in predicting the weld penetration in SAW process.
Mohammad Jula, Reza Dehmolaei, Seyed Reza Alavi Zaree,
Volume 2, Issue 2 (11-2016)
Abstract
In this paper, maximum value of energy to break at Charpy impact test as a criterion of fracture toughness of AISI 316/A387 Gr.91 weld joints with ERNiCrMo-3 filler metal were obtained by optimization of pulesd current gas tungsten arc welding process parameters. The selected parameters were peak current, background current, frequency and on time percentage that were changed in three levels. Therefore a L9 orthogonal array of Taguchi design including nine experiments for four parameters with three levels (34) was used. Analysis of signal to noise (S/N) ratio indicated that optimized values of peak current, background current, frequency and on time percentage were 120A, 90A, 10Hz and 80%, respectively. The welded specimen with optimized parameters showed an energy to break at Charpy impact test value of 65J at -20°c. The obtained results also demonstrated that the most influence on energy to break values belonged to background current, frequency, peak current and on time percentage, respectively.
Mahdi Lashkari Ghoochani, Behrooz Beidokhti,
Volume 2, Issue 2 (11-2016)
Abstract
In this research 420 martensitic stainless steel welded with the ER308L, ER309L and ER420 fillers by GTAW method. The corrosion properties of the samples has been studied in 3.5% NaCl solution with and without CO2. Potentiodynamic polarization used to obtain the ER308L and ER309L have the best corrosion properties. In addition the welding process makes the 420 HAZ zone to be sensitized. The pitting potential of the samples has been decreased in presence of carbon dioxide. Furthermore, by adding CO2 to the solution the pH has been decreased and the corrosion potential reached near the -500 mV/SCE and the passivity current is also lowered.
M. Safari, H. Mostaan,
Volume 2, Issue 2 (11-2016)
Abstract
In this paper, resistance spot welding process of AISI 201 stainless steel is studied experimentally. For this purpose, effect of welding current on quality of weld is investigated and relationships between welding current and fusion zone characteristics are examined. For determining mechanical properties such as maximum load and fracture mode, tensile - shear test of spot welds is performed. Hardness and microstructural examinations are performed for study the influence of welding current on characteristics of welded joints. The results show that strength of resistance spot welds of AISI 201 stainless steel is increased with increase in welding current. Transition of fracture mode from interfacial to pullout and then pullout with tearing of sheet mode during tensile-shear tests of AISI 201 spot welds is investigated through experimental and theoretical approaches. It is concluded from results that increasing in welding current leads to change in fracture mode from interfacial to pullout mode due to increase in fusion zone size (weld nugget size). Also, it is observed that increasing in fusion zone size is accompanied by an increase in load carrying capacity of resistance spot welds. The minimum required fusion zone size to ensure pullout fracture mode is estimated using an analytical model.
B. Sadeghi, H. Sharifi, M. Rafiei,
Volume 3, Issue 1 (8-2017)
Abstract
In this research, the microstructure and mechanical behavior of dissimilar joint of AISI 321 stainless steel to ASTM A57CL1 were studied. For this purpose, the GTAW process and ER 308L filler metal with diameter of 1.8 mm were used. In order to study the microstructure and fracture surface of weld samples, optical microscope and scanning electron microscope (SEM) were used. Also, the mechanical behavior of the joint was examined by impact, tension and microhardness tests. It was found that the microstructure of weld metal was austenite with skeletal ferrite. Also in some areas the lacy ferrite was seen. All samples were fractured from ASTM A537CL1 steel with a ductile manner during the tension test. The weld metal indicated high impact energy about 205 J.
M. Ahl Sarmadi, M. Shamanian, M. Atapour, H. Edris, A. Behjat,
Volume 3, Issue 1 (8-2017)
Abstract
In this study, the corrosion behavior of super duplex stainless steel UNS S32750 and tungsten arc welding with filler metals AWS ER2594 duplex stainless steel in acidic solution containing chloride ions have been investigated. Microstructure of weld joints evaluateby light and electron microscope and corrosion behavior examine by open circuit potential and cyclic polarization tests.The results showed that increas in heat input leads to a change in the distribution of alloying elements, formation of intermetallic phases around grain boundaries and the shifting balance between austenite and ferritein phases in weld region. Based on the cyclic polarization tests, cross-weld and base metal active behavior and have good corrosion resistance due to the presence of high alloying elements. As well as increase in heat input leads to an increase in current density and decrease in the pitting potential.
H. Aghajani Derazkola, M. Hosseinzadeh, M. Elyasi,
Volume 3, Issue 1 (8-2017)
Abstract
In this study, the effects of linear speed and rotational speed of the friction stir welding tool was investigated on the heat generation and distribution of heat,the material flow and weld defect formation of the Polyamide 6 (PA6) workpiece. The commercial CFD Fluent 6.4 software package was used to the simulation of the process with computational fluid dynamic technique. The output results of the simulation showed higher proportion of rotational speed to the tool linear speed, the material flow in front of the friction stir welding tool became more and the dimension of the welding stir zone became bigger. The maximum simulating generated heat was 220 centigrade degrees and the maximum head and material flow were observed at the advancing side of the join surface. The obtained simulation results were compared with other researchers' experimental results and the simulation outputs displayed acceptable agreement with experimental results.
V. Zohoori-Shoar, F. Karimzadeh, A. Eslami,
Volume 3, Issue 1 (8-2017)
Abstract
In this study, The Al 6061 alloy sheets were produced by Cryorolling process and then were welded by resistance spot welding method. In this regard, the solution treated Al 6061 alloy cryorolled subsequently up to 90% reduction in thickness to produce nanostructure alloy. The cryorolled sheets were then subjected to aging treatment (130˚C-30h) in order to obtain simultaneous strength and ductility. Tensile strength of 370 MPa, hardness of 135 HV, and ductility of 11 % was obtained for the nanostructured Aluminum sheets. The Cryorolled samples were then resistance spot welded with different welding parameters, including welding current 50 to 100 kA, electrode force of 2.8 kN, and welding time of 0.1 s. The most tensile shear peak load of weld spot of nanostructured samples was 5580 N. The results for different welded samples showed that the nanostructured ones, have higher weld strength when compared with 6061-T6 Aluminum alloy samples with common grain size.