Showing 4 results for Ferrite
M. Toghraei Semiromi, M. Mosallaee Pouryazdi, M. Kalantar, A. Seifoddini,
Volume 5, Issue 1 (9-2019)
Abstract
In the present study, effect of Ni alloying element on the characteristics of deposited weld metal of E7018-G electrode was evaluated. Therefore, electrodes contained different amounts of Ni (0-1.7wt.%) were designed, manufactured and welded via SMAW process. Microstructural studies revealed dichotomy effect of Ni on the deposited weld metal microstructure, i.e. increasing the Ni content up to 1.2wt.% improved the formation of acicular ferrite in the weld metal microstructure and caused significant grain refinement at the reheated zone of weld metal. While, higher Ni content (>1.2wt.%) resulted in some raising in the widmannstatten ferrite content in the weld metal. Strength multiplied by impact energy parameter (UTS×CVN) was used for mechanical properties assessment. Mechanical properties evaluation revealed the highest UTS×CVN parameter achieved in the weld metal contained 1.2wt.% Ni. Hardness of the weld metal increased with increasing Ni content which is related to the formation of micro constituents in the microstructure of weld metal and increasing their content with increasing Ni content.
J. M. Milani, T. Saeid,
Volume 5, Issue 1 (9-2019)
Abstract
In the present study, effect of inclusions characteristics changing on the formation of acicular ferrite in submerged arc welding of API5l-X65 low alloy steel was investigated. Three different welding fluxes with different chemical composition and basicity index of 0.72, 0.82 and 0.99, and two different welding heat inputs of 1.6 kJ / mm and 2.4 kJ / mm were used to create inclusions with different characteristics such as chemical composition and size. The results indicate that inclusions acting as acicular ferrite nucleation sites and improvement of the microstructure and resulted mechanical properties, can be observed in welding conditions in which the welding flux with lowest basicity index and higher welding heat input. Under these conditions, the percentage of inclusions with a high titanium oxide value and size range of 0.5 to 1.5 micrometers is increased, which increases the amount of acicular ferrite in the microstructure. However, in other welding conditions, formation of grain boundary ferrite reduces amount of acicular ferrite and weakens mechanical properties of weld metal compared to the base metal.
M. Afzali, R. Dehmolaei, E. Hajjari,
Volume 5, Issue 1 (9-2019)
Abstract
Mehdi Asle Taghipour, Reza Dehmolaei, Seyed Reza Alavi Zaree, Mohammad Reza Tavakoli Shoushtari,
Volume 7, Issue 1 (8-2021)
Abstract
The microstructure and mechanical properties of HSLA-100 steel weld joints was investigated. Welding with three heat input of 0.820, 1.176 and 1.392 kJ / mm was performed using E12018 electrode. Microstructural studies were performed using scanning electron and optical microscopes. The mechanical properties of welded joints were evaluated by impact and microhardness tests. Microstructural studies showed that with increasing the heat input, the amount of acicular ferrite in the weld metal decreased and the amount of polyhedral and quasi-polygonal ferrite increased. It was found that with increasing the heat input, the amount of layered bainite in the heat affected zone increased and the amount of granular bainite decreased. Due to the decrease in the amount of acicular ferrite in the weld metal microstructure with increasing inlet temperature, the amount of hardness and impact energy decreased. The results showed that the increase in heat input due to the reduction of the acicular ferrite of the weld metal and the dissolution of precipitates in the coarse grain heat affected zone has caused a decrease in hardness in these zones. It was found that with increasing the heat input due to decreasing the acicular ferrite, the impact energy of the weld metal decreased by 29% (from 45 joules at an heat input of 0.82 to 32 joules at an heat input of 1.392 kJ / mm). It was found that at all heat inputs, the impact energy of the base metal is greater than the impact energy of the weld metal.