Showing 4 results for Impact
M. Toghraei Semiromi, M. Mosallaee Pouryazdi, M. Kalantar, A. Seifoddini,
Volume 5, Issue 1 (9-2019)
Abstract
In the present study, effect of Ni alloying element on the characteristics of deposited weld metal of E7018-G electrode was evaluated. Therefore, electrodes contained different amounts of Ni (0-1.7wt.%) were designed, manufactured and welded via SMAW process. Microstructural studies revealed dichotomy effect of Ni on the deposited weld metal microstructure, i.e. increasing the Ni content up to 1.2wt.% improved the formation of acicular ferrite in the weld metal microstructure and caused significant grain refinement at the reheated zone of weld metal. While, higher Ni content (>1.2wt.%) resulted in some raising in the widmannstatten ferrite content in the weld metal. Strength multiplied by impact energy parameter (UTS×CVN) was used for mechanical properties assessment. Mechanical properties evaluation revealed the highest UTS×CVN parameter achieved in the weld metal contained 1.2wt.% Ni. Hardness of the weld metal increased with increasing Ni content which is related to the formation of micro constituents in the microstructure of weld metal and increasing their content with increasing Ni content.
M. Sabokrouh ,
Volume 5, Issue 2 (1-2020)
Abstract
In this article the effects of carburizing heat treatment on girth weld with containing titanium oxide and titanium carbide nanoparticles (X-65 grade of gas pipeline) is evaluated. The charpy results show that in the carburized sample containing titanium oxide and titanium carbide nanoparticles compared to the no heat treatment sample (containing titanium carbide and titanium carbide nanoparticles), has been respectively increased by 6% and 42%. Also, the ultimate strength carburized sample containing titanium oxide nanoparticles and titanium carbide nanoparticles compared to the no heat treatment sample (containing titanium oxide and titanium carbide nanoparticles) has been respectively increased by 20% and 28%. The results show that the fatigue life in both carburized nano-alloy samples has been increased. The fatigue life in the carburized sample of titanium carbide nanoparticles has increased more than that of titanium oxide nanoparticles. The fatigue test results show that in the carburized sample containing titanium carbide nanoparticles compared to the tempered sample containing titanium oxide nanoparticles, fatigue life (150-N force) has been increased by 20%. In this loading the fatigue life (tempered sample containing titanium carbide nanoparticles compared to the no heat treatment sample) has been increased by 31%. The results show that the residual stress in both carburized nano-alloy samples has been decreased The hole drilling strain gage results show that in the tempered sample containing titanium oxide oxide nanoparticles and titanium carbide nanoparticles compared to the no heat treatment sample (containing titanium oxide nanoparticles and titanium carbide nanoparticles), hoop residual stresses has been respectively decreased by 9% and 6%.
Mehdi Asle Taghipour, Reza Dehmolaei, Seyed Reza Alavi Zaree, Mohammad Reza Tavakoli Shoushtari,
Volume 7, Issue 1 (8-2021)
Abstract
The microstructure and mechanical properties of HSLA-100 steel weld joints was investigated. Welding with three heat input of 0.820, 1.176 and 1.392 kJ / mm was performed using E12018 electrode. Microstructural studies were performed using scanning electron and optical microscopes. The mechanical properties of welded joints were evaluated by impact and microhardness tests. Microstructural studies showed that with increasing the heat input, the amount of acicular ferrite in the weld metal decreased and the amount of polyhedral and quasi-polygonal ferrite increased. It was found that with increasing the heat input, the amount of layered bainite in the heat affected zone increased and the amount of granular bainite decreased. Due to the decrease in the amount of acicular ferrite in the weld metal microstructure with increasing inlet temperature, the amount of hardness and impact energy decreased. The results showed that the increase in heat input due to the reduction of the acicular ferrite of the weld metal and the dissolution of precipitates in the coarse grain heat affected zone has caused a decrease in hardness in these zones. It was found that with increasing the heat input due to decreasing the acicular ferrite, the impact energy of the weld metal decreased by 29% (from 45 joules at an heat input of 0.82 to 32 joules at an heat input of 1.392 kJ / mm). It was found that at all heat inputs, the impact energy of the base metal is greater than the impact energy of the weld metal.
Mehdi Mizabi Ask, Majid Belbasi,
Volume 9, Issue 2 (8-2024)
Abstract
In this study, the effect of heat input on the microstructure and mechanical properties of the joint of two dissimmilar steels D6AC and VCN 200 steel was investigated. For this purpose, the samples were welded with the current intensity of 130, 145 and 160 Ampers by GTAW process and using ER120 SG welding wire with a diameter of 2.4 mm. The metallographic results showed that the microstructure of the weld metal consisted of lath martensite and acicular ferrite phases, which increased the volume fraction of ferrite from 5 to 32% with the increase of heat input, and the morphology of the ferrite changed from acicular to polygonal ferrite due to the decrease in the cooling rate. The HAZ area microstructure consist of bainite, lath martenrite and ferrite. The highest strength value was obtained in the welded sample with low heat input. With the increase of heat input, the tensile strength has decreased from 1064 to 875 MPa. Also, with the increase of heat input, the impact energy has increased in the welding zone due to the increase of stable phases, and in the HAZ zone due to the growth of the primary austenite grains and the reduction of the grain boundary locking effect. The results of the fracture analysis showed that the fracture occurred in the weld zone with low heat input, brittle fracture, and in the HAZ area, combination of ductil and brittle fracture occurred. However, with the increase in heat input, dutil fracture occurred in the welding zone and brittle fracture occurred in the HAZ zone due to grain growth.