جستجو در مقالات منتشر شده


1 نتیجه برای الگوریتم آموزش و یادگیری.

مهدی صفری، امیر حسین ربیعی، جلال جودکی،
دوره 7، شماره 1 - ( 5-1400 )
چکیده

روش جوشکاری مقاومتی نقطه ای یکی از روش های موثر برای اتصال ورق های فلزی می باشد. تخمین نیروی شکست در قطعات جوشکاری شده از اهمیت بالایی برخوردار بوده و از روش های مختلفی برای یافتن نیروی شکست استفاده می شود. در این مقاله از یک سیستم استنتاج عصبی-فازی تطبیقی (انفیس)  برای تخمین و پیش بینی میزان استحکام قطعات جوشکاری شده استفاده می شود. برای این منظور با انجام یک طراحی آزمایش برای پارامترهای موثر فرآیند شامل شدت جریان جوشکاری، زمان اعمال جریان، زمان خنک شدن و نیروی مکانیکی، نمونه های جوشکاری تهیه شد. ورق مورد استفاده در نمونه ها فولاد کربنی AISI 1060 می باشد. پس از انجام آزمون کشش استحکام نمونه ها بدست آمده و سپس با استفاده از الگوریتم بهینه­سازی آموزش و یادگیری در سیستم استنتاج عصبی-فازی تطبیقی پارامترهای بهینه مدل توسعه داده شده بدست آمد. 70 درصد داده­های مربوط به استحکام نمونه ها برای آموزش سیستم استنتاج عصبی-فازی تطبیقی و 30 درصد باقیمانده برای بررسی صحت مدل ایجاد شده(بخش تست) مورد استفاده قرار گرفته است. دقت مدل بدست آمده با استفاده از نمودارهای مختلف و همچنین بر اساس معیارهای آماری جذر میانگین مربعات خطا، میانگین خطای مطلق، ضریب تعیین و درصد میانگین خطای مطلق  بررسی شده است. از نتایج بدست آمده مشخص می­شود که شبکه انفیس در پیش­بینی استحکام شکست قطعات جوشکاری شده توسط فرآیند جوشکاری مقاومتی نقطه ای بسیار موفق عمل کرده­است. در پایان مشاهده می­ شود که ضریب تعیین و درصد میانگین خطای مطلق برای تخمین استحکام شکست در بخش آموزش به ترتیب برابر با 99/0 و 48/0 درصد و در بخش تست برابر با 95/0 و 2/6 درصد می­باشند.

صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به مجله علمی-پژوهشی علوم و فناوری جوشکاری ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb