جستجو در مقالات منتشر شده


1 نتیجه برای Al-5083

مسعود مصلایی، امین حسین مرشدی،
دوره 9، شماره 2 - ( 10-1402 )
چکیده

در این تحقیق، بهینه‌سازی قابلیت شبکه عصبی مصنوعی (ANN) به‌منظور پیش‌بینی استحکام کششی و ازدیاد طول نسبی اتصالات ایجاد شده بر Al-5083 توسط فرایند جوشکاری همزنی اصطکاکی (FSW) مورد بررسی قرار گرفت. بدین منظور با تغییر پارامترهای موثر بر کارایی ANN از قبیل تعداد لایه‌ها و تعداد نورون‌های لایه‌های مخفی، نوع تابع انتقال بین لایه‌ها، الگوریتم یادگیری و غیره، شبکه عصبی کارآمد برای پیش‌بینی خواص کششی اتصالات FSWed-Al-5083 تعیین گردید. بررسی‌های انجام شده آشکار نمود که شبکه عصبی پرسپترون با دو لایه پنهان و تعداد 17 نورون، الگوریتم آموزش لونبرگ-مارکوارت و تابع انتقال Logsig برای لایه‌های میانی و تابع تبدیل Tansig برای لایه خروجی، کارآمدترین شبکه عصبی برای پیش‌بینی مورد نظر است. شبکه مذکور دارای ساختار بهینه براساس کمینه مقدار خطای میانگین مربعات 05/0، بیشینه ضریب همبستگی کل 93/0 و رگرسیون خط با زاویه 45 درجه بین مقادیر واقعی و پیش‌بینی شده می‌باشد. در نتیجه این شبکه از کارایی مطلوبی برای آموزش، تعمیم و برآورد استحکام کششی و ازدیاد طول نسبی Al-5083 اتصال FSW داده شده برخوردار است.


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به مجله علمی-پژوهشی علوم و فناوری جوشکاری ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb