دوره 32، شماره 1 - ( 4-1392 )                   جلد 32 شماره 1 صفحات 14-1 | برگشت به فهرست نسخه ها

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

خاشعی مهدی، بیجاری مهدی، مخاطب رفیعی فریماه. پیش بینی نرخ ارز با بکارگیری مدل های ترکیبی پرسپترون های چندلایه (MLPs) و طبقه بندی کننده های عصبی احتمالی (PNNs). روشهای عددی در مهندسی. 1392; 32 (1) :1-14

URL: http://jcme.iut.ac.ir/article-1-551-fa.html


چکیده:   (2818 مشاهده)

پیش بینی از ابزارها و راهکارهای مؤثر به منظور برنامه ریزی و تدوین استراتژی های مالی است. دقت پیش بینی ها از مهمترین فاکتور های مؤثر در انتخاب روش پیش بینی است. امروزه علی رغم وجود روش های متعدد پیش بینی، هنوز پیش بینی های دقیق، به ویژه در بازارهای مالی کار چندان ساده ای نبوده و اکثر محققان درصدد به کارگیری و ترکیب روش های متفاوت به منظور حصول نتایج دقیق ترند. ترکیب مدل های مختلف یا استفاده از مدل های ترکیبی یک راه معمول در غلبه بر محدودیت های روش های تکی و بهبود عملکرد آنهاست. در ادبیات موضوع، روش های ترکیبی متعددی بر اساس مدل های پرسپترون های چندلایه و به منظور رفع نقایص و محدودیت های موجود در این گونه از روش ها طراحی و به کارگرفته شده اند. دراین مقاله، یک روش ترکیبی جدید از پرسپترون های چندلایه با استفاده از شبکه های عصبی احتمالی ارائه شده است. روش پیشنهادی با به کارگیری قابلیت های منحصر به فرد شبکه های عصبی احتمالی در تشخیص نقاط شکست، تغییرات و الگوهای خاص موجود در سری های زمانی مورد مطالعه را بهتر و کامل تر مدل سازی کرده و لذا عملکرد و دقت مدل در پیش بینی سری های زمانی را افزایش می دهد. نتایج حاصله از بکارگیری روش ترکیبی پیشنهادی به منظور پیش بینی نرخ ارز بیانگر کارامدی روش پیشنهادی در افزایش دقت پیش بینی ها بوده است.
متن کامل [PDF 5664 kb]   (2028 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى
دریافت: 1395/3/27 | پذیرش: 1395/3/27 | انتشار: 1395/3/27

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

کلیه حقوق این وب سایت متعلق به روشهای عددی در مهندسی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb

64579f77e436cd7