In a pressure flushing method, when the water is discharged from the bottom outlet, after a period of flushing, a flushing cone will be formed at the front of the bottom outlet; the dimension of this cone is affected by several parameters such as outlet discharge flow, water depth of reservoir, and the kind of sediments accumulated in the reservoir. In this study, for the effect of cohesive & non-cohesive sediments, a physical model using specific dimensions was employed in order to develop the sediment evacuation method, and them a Semi-Cylinder structure in front of the lower drain was tested. The experiments were carried out using cohesive & non-cohesive sediments under two conditions: with the semi-cylinder and without it, at 90 experiments. The results indicated that the with discharge was increased, on i average, under both conditions and the volume of the score cone was increased. With decreasing the water depth, the flow mood was changed to free flushing, increasing the length and volume of the score cone. Semi-Cylinder form, on average, increased the volume of sedimentation and the length of sedimentation; this increase could be due to the formation of a pair of rotating Vortexes inside the Semi-Cylinder structure on both sides of the central axis of the valve.
Type of Study:
Research |
Subject:
Ggeneral Received: 2017/09/9 | Accepted: 2017/12/17 | Published: 2019/03/15