1- Department of Mechanical Engineering, Faculty of Engineering, SRTT University, Tehran, Iran
2- Department of Mechanical Engineering, Malayer University, Malayer, Iran
Abstract: (7503 Views)
Laser welding is a novel method for direct joining of metals and polymers, which leads to a mechanical and chemical bond between metal and polymer. In this study, feasibility of dissimilar joining between St12 and polycarbonate is studied theoretically. Then, the ND: YAG laser is implemented to join St12 and Polycarbonate. Empirical results indicate creation of a joint between St12 and polycarbonate. In order to conduct thermomechanical analysis of the welding process, the finite element model has been developed by Abaqus software. In addition, the cylindrical-involution-normal (CIN) heat source model was used to describe the laser power distribution and FORTRAN software has been used to define the thermal model in welding simulation. Comparison of experimental and simulation results shows that the finite element model is capable of predicting weld width, and therefore the results of the finite element model are verified. Therefore, the finite element model is used to predict residual stresses. The results disclose that dissimilar bonding creates residual tension stresses on the metal surface and compressive residual stresses on the polymer surface.
Type of Study:
Research |
Subject:
Special