Volume 9, Issue 2 (Journal OF Welding Science and Technology 2024)                   JWSTI 2024, 9(2): 1-14 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bozorgmehr M, Heidari A, Amini K, Loh Mousavi M, Gharavi F. The effect of traverse speed in friction stir process on the microstructure, mechanical properties and wear behavior Al5052/ZrO2/ZrSiO4 surface hybrid composite. JWSTI 2024; 9 (2) :1-14
URL: http://jwsti.iut.ac.ir/article-1-436-en.html
1- Department of Mechanical Engineering, Khomeini-shar Branch, Islamic Azad University,Isfahan, Iran
2- Department of Mechanical Engineering, Khomeini-shar Branch, Islamic Azad University,Isfahan, Iran , amini@iaukhsh.ac.ir
3- Department of Materials Engineering, Sirjan Branch, Islamic Azad University, Sirjan, Iran
Abstract:   (2709 Views)
In the present study, friction stir process (FSP) was used to produce AL/ZrO2/ZrSiO4 surface hybrid composite at a fixed rotation speed of 1400 rpm and traverse speeds of 20, 25, 31.5 and 40 mm/min. Therefore, the purpose of the mentioned study is to investigate the effect of tool traverse speed on the microstructure, hardness and wear behavior of the above-mentioned surface hybrid composite and compare it with base material aluminum 5052. Investigations showed that as a result of FSP operation, a fine-grained structure is created, which improves the hardness and wear resistance of the samples compared to the base sample with the presence of ZrO2 and ZrSiO4 particles. Also, the results showed that among the FSP samples, the sample with a speed of 20 mm/min has the highest hardness and wear resistance. The reason for this is that in this sample, due to the lower traverse speed compared to other samples, more heat has been generated, which has led to more suitable particle distribution and more fine particles. Therefore, in the sample with the traverse speed of 20 mm/min, the hardness and wear resistance increases by 27.3% and 68.9% respectively compared to the base material sample. Also, the examination of the wear surfaces of the samples showed that the wear mechanism in the base sample is strong adhesive wear, and as a result of the FSP operation and surface compositing due to the fineness of the grains and the increase in hardness, the wear mechanism has become weak adhesive, so the wear resistance of the sample is FSPs have been improved.
 
Full-Text [PDF 5418 kb]   (594 Downloads)    
Type of Study: Research | Subject: Special

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb